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CHAPTER I 

Introduction 

  

 

The most common misunderstanding about science is that scientists seek and find truth. 

They don’t – they make and test models… Making sense of anything means making models that 

can predict outcomes and accommodate observations. Truth is Model. 

Neil Gershenfeld, American Physicist, 2011  

One of the most powerful uses of mathematics is the mathematical modeling of real life 

situations. Mathematics can be used to adequately represent and in fact model  the world, 

given that it displays a kind of exactness and necessity that appears to be in sharp contrast with 

the contingent character of reality. Wigner [30] famously claimed that the “miracle of the 

appropriateness of the language of mathematics for the formulation of the laws of physics is a 

wonderful gift which we neither understand nor deserve.”. Wigner emphasis the unexpected 

applicability of mathematics in natural sciences. He gives a large number of examples of 

effectiveness of mathematical models in natural sciences. He argues that the “miracle of the 

appropriateness of the language of mathematics for the formulation of the laws of nature is a 

wonderful gift which we neither understand nor deserve.” It is a miracle that mathematical 

concepts introduced for aesthetic reasons turn out to unexpectedly apply. 

Models describe our beliefs about how the world around us functions. In mathematical 

modelling, we try to translate those beliefs into the language of mathematics. Mathematics 

helps us to formulate ideas and identify underlying assumption as it is a precise language. 

Mathematics is also a concise language, with well-defined rules for manipulations. Moreover, 

all the results that mathematicians have proved over thousands of years are at our disposal. In 

the modern age, computers can be effectively used to perform numerical calculations. So in 

recent years, the use of mathematical models in research of science science have been given 

serious consideration by scientists. 

Objectives of the Project  

The purpose of the project is to study a perishable inventory model with Markovian 

Arrival Process input. We propose to use the performance measures thus obtained to control 

and design such models if closed form solutions are available. If the models is not analytically 

tractable we propose to develop an algorithmic solution using the set of tools in “ matrix 

geometric method”. FORTRAN code is proposed for the performance analysis.  
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 We propose to study the following models:  

First, we analyze an inventory model in which there are demands for “new” items as 

well as “perished items” which require repair. The repair requires a positive service time. This is 

a special class of inventory with two types of commodities in the inventory in which one of 

them requires negligible service time while the other requires a positive service time.  

The second model we propose to investigate is a retrial queueing model in which the 

units (customers) in the orbit undergoing decay or perishing. Our objective is to control such a 

model and obtain the optimal utilization policy. We propose to analyze different real life 

situations with different types of decay rate and perishing rate. 

The third model is a variant of a second model. We try to design a model which idle time 

of the server is decreased by introducing a search mechanism. The search mechanism will go 

for search of perishable items in the orbit and try to ‘promote’ the service of perishable items 

as early as possible. We intend to incorporate the special class of tractable Markov renewal 

process, namely MAP or Phase type (PH) distribution in this case.      

Mathematical Modelling: A Historical Note 

The word “modeling” comes from the Latin word modellus. Mathematical models are 

abstract representations of realty. Abstract representations of real-world objects have been in 

use since the stone age. Cavemen paintings revealed that the real breakthrough of modeling 

came with the cultures of the Ancient Near East and with the Ancient Greek. Use of numbers is 

documented since about 30,000 BC. Numbers were considered to be the recognizable models. 

It is well known that by 2,000 BC at least three civilizations Babylon, Egypt, and India had a 

decent knowledge of mathematical models to improve their every-day life.  

The development of philosophy in the Hellenic Age and its connection to mathematics 

lead to the deductive method.The origin ofmathematical theoryis attributed to the deductive 

method. As about 600 B.C, Thales of Miletus started using geometry as an effective tool for 

analyzing reality. Modeling using geometry were further developed by Plato, Aristotle, and 

Eudoxes at about 300 BC. The summit was reached by Euclid of Alexandria in the same period 

when he wrote The Elements, a collection of books containing most of the mathematical 

knowledge available at that time.  Euclid presented an ‘axiomatic’ description of geometry in 

The Elements through ‘postulates’. This attempt gave rise the first concise axiomatic approach 

to the mathematical modeling. Around 250 BC Eratosthenes of Cyrene, estimated the distances 

between Earth and Sun and Earth and Moon and, the circumference of the Earth by a  

geometrical model. Some historians considered Eratosthenes of Cyrene  as the first “applied 

mathematician”.Diophantus of Alexandria about 250 AD developed the beginnings of algebra 

based on symbolism and the notion of a variable. This was recorded  in his book Arithmetica. 

A land mark mathematical model describing the mechanics of celestial bodies was 

developed by Ptolemy in 150 AD. The model was so accurate to predict the movement of sun, 
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moon, and the planets.It was used until the time of Johannes Kepler in 1619, when he finally 

found a superior model for planetary motions. Later Kepler’s model was further modified and 

refined by Issac Newton and Albert Einstein and the resultant model is still valid today. 

   The modern concept ofalgorithm is credited to the 8th century Arabian 

mathematicians Abu Abd-Allah ibnMusa. He wrote two famous books. The first was about the 

Indian numbers—today called Arabic numbers and the second was about the procedures of 

calculation by adding and balancing  His books contain many mathematical models and 

problem solving algorithms  for real-life applications in the areas such as commerce, legacy, 

surveying, and irrigation. The term algebrawas taken from the title of his second book. 

 The probably first great western mathematician who significantly contributed to 

Mathematical Modelling after the decline of Greek mathematics was Fibonacci, Leonardo da 

Pisa (ca. 1170–ca. 1240). His most influential book is Liber Abaci, published in 1202.It began 

with a presentation of the ten "Indian figures" (0, 1, 2,..., 9), as he called them. He is the man 

who finally brought the number zero to Europe, an abstract model of nothing. The book itself 

was written to be an algebra manual for commercial use. 

 Artists like the painter Giotto (1267–1336) and the Renaissance architect and sculptor 

Filippo Brunelleschi (1377–1446) started a new development of geometric principles, especially 

called perspective drawing. In that time, visual models were used as well as mathematical ones. 

Anatomy is a typical example.. 

 In the later centuries more and more mathematical models were detected, and the 

complexity of the models increased they address the actual real life situations. It took another 

300 years until Cantor and Russell that the true role of variables in the formulation of 

mathematical theory was fully understood. Physics and the description of Nature’s principles 

became the major driving force in modeling and the development of the mathematical theory. 

Later economics joined the group, and now an ever increasing number of applications demand 

models and their analysis. 

The combination of science and modeling leads to a complete understanding of the 

phenomenon being studied. The uncanny accuracy that Wigner describes extends to all aspects 

of mathematical modelling and theorizing. Mathematical representations are often based on 

crude experience, but they are also based on intrinsic limitations regarding what can be 

mathematically achieved. 

Models are considered to be vehicles for learning about the world. Studying a model we 

can discover features of and ascertain facts about the system the model stands for. So, 

significant parts of scientific investigation are carried out on models rather than on reality itself. 

Thus, models allow for surrogative reasoning. For instance, we study the nature of the 

hydrogen atom, the dynamics of populations, or the behavior of polymers by studying their 

respective models. This cognitive function of models has been widely acknowledged in the 

literature, and some even suggest that models give rise to a new style of reasoning, so-called 
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‘model based reasoning’. Hughes [16] provides a general framework for discussing this 

question. According to his so-called DDI account, modeling takes place in three stages: 

denotation, demonstration, and interpretation. 

Learning about a model happens at two places, in the construction and the 
manipulation of the model. Depending on what kind of model we are dealing with, building and 
manipulating a model amounts to different activities demanding a different methodology. An 
important class of models is of mathematical nature. In some cases it is possible to derive 
results or solve equations analytically. But quite often this is not the case. It is at this point 
where the invention of the computer had a great impact, as it allows us to solve equations 
which are otherwise intractable by making a computer simulation. Many parts of current 
research in both the natural and social sciences rely on computer simulations. The formation 
and development of stars and galaxies, the detailed dynamics of high-energy heavy ion 
reactions, aspects of the intricate process of the evolution of life as well as the outbreak of 
wars, the progression of an economy, decision procedures in an organization and moral 
behavior are explored with computer simulations, to mention only a few examples. 

 Once we have knowledge about the model, this knowledge has to be ‘translated’ into 
knowledge about the target system. It is at this point that the representational function of 
models becomes important again. Models can instruct us about the nature of reality only if we 
assume that the aspects of the models have counterparts in the world. The author refers to 
Leng, Mary [19], Morgan [20] and Morrison, Margarat [22] for learning from models.  

Origin and the Relevance of the Research Problem.  

This project discuss the inventory management of perishable items. It also emphasis the 

importance of appropriately managing the inventory of perishables. The analysis of perishable 

inventory systems is primarily focused on the tactical question of which inventory control 

policies to use and the operational questions of how perishables can effectively managed. 

Insight derived for managing perishable inventory is much more valid for commodities and 

objects with short life span. 

Most products become out date or lose their market value over time. Some products 

lose value faster than others and they are known as perishable products. Traditionally, 

perishables outdate due to their chemical structure. Examples of such perishable products are 

fish products, food products, dairy products, meat, drugs, vitamins etc. But today there are 

products which outdate because of changes in “market conditions”. Personal computers, 

computer components such as micro-processors, memory, data storage units, cellular phones, 

digital cameras, digital music players, smart watches and fashion designer dresses are examples 

of such products that rapidly lose market value. The life cycles of such products are getting 

shorter every year due to technological advances. Perishability and outdating are a concern not 

only for these consumer goods, but for industrial products as well. Recently it was observed by 

chemical scientists that adhesive materials used for plywood lose strength within 7 days of 
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production.  Blood - one of the most critical resources in health care supply chains is another 

important example. 

Modeling in such an environment implies that at least one or both of the following 

holds. First, demand for the product may decrease over time as the product ages.This is simply 

because, the reduced life time will decrease the utility and quality of the product. Second, 

operational decisions can be made more than once during the lifetime of the product. Either of 

these factors make the analysis of perishable inventory models a challenge. 

Review of Research and the development in the Perishable Inventory Models 

One of the pioneer papers on Perishable Inventory models was by Derman and Klein[11] 

in 1958. In this paper, it was assumed that an item which is issued at an age s has a “field life” 

of L(S) where L is a known function. The general approach was to specify conditions on L for 

which issuing either the ‘First in First Out (FIFO) or the ‘Last in First Out’(LIFO) is optimal. Note 

that in FIFO, the oldest and in LIFO the newest is being issued. There are mainly two streams in 

such models. They are models with deterministic demand and stochastic demand. We consider 

the stochastic demand models as they are more common and realistic. But one important thing 

we need to note here is that, the stochastic perishable inventory models are more complex and 

hence the analysis is cumbersome. In 1958, Arrow et al [1] considered a Newsboy problem in 

which the life time is assumed to be exactly one period. Hence the ordering decisions in 

successive periods are independent. In 1964, Bulinskaya[7] considered a model in which the 

delivery perishes immediately with probability p and after one period with probabilty1-p. The 

first perishable inventory model with multiechelon system was considered by Yen [32] in 

1965.This pioneer paper pave path to modelswhich consider both allocation and ordering 

problem.  

The first analysis of optimal policies for a fixed life perishable commodity was due to 

Van Zyl. Later in early 1970’s Nahmian and Pierskella [23] improved such models through a 

series of papers.In late 70’s and in early 80’s several papers emerged considering set up costs 

and optimalpolicies are being continuously reviewed.In 1975, Cohen[] finds the critical number 

S that minimized the expected cost. The first paper considering the analysis of ordering of 

perishable goods subject to uncertainty in both the demand and the life time was due to 

Nahmias [23] in 1974. 

In 1960, Millard[21] applied the theory of perishable inventory model to manage the 

stocking of blood. It is interesting to note here that primarily the interests of researchers of 

perishable inventory models were concentrated on the management of blood banking system 

during 1970’s.  Reasons for this might be the blood bank research was supported by public 

funds! But gradually food management also came to the picture. 

For further review on inventory models, the author refers to Berman et al [6], Cohen [9], 

Hadley and Whitin [15]. 
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Methodology 

Mathematical representations of physical systems are constructed on the basis of 

uncertainty. In other words. The real life situations and phenomenon have random nature. So, 

ideally we refer to these phenomenon as random process or stochastic process. In this project, 

we concentrate on a stochastic inventory management using the techniques of Queueing 

Theory. 

Results derived for Queueing theory with impatient customers can be used for the 

analysis of certain type perishable inventory models. This project mainly rely on this technique. 

Consider a single server queue in which customers will wait for arandom amount of time and 

leaves the system without service because of impatience. In this case, we can identify the 

queue with the inventory, the service process with the demand, the time to impatience with 

the life time of fresh stock, and the arrival of customers to the replenishment of the inventory. 

Inventory, Queueing and Reliability are three areas of Applied Probability. They have 

much in common and can be  the same mathematical techniques and procedures. First work on 

Queueing theory was The Theory of Probabilities and Telephone conversations by A.K. Erlang 

published in 1909.Telephone systems remained the principal application of the queueing 

theory through about 1950. The trend rapidly changed during the II world war and numerous 

other applications were found. The techniques of queueing theory can be seen in Cooper [10]. 

In 1950’s a new class of queueing models namely retrial queues were emerged. Retrial 

queues were also originated with the problems in telephone networking and communication. 

The standard models of telephone systems, are queueing systems with losses. In the real life 

situatios, the flow of calls circulating in a telephone network consists of two parts: the flow of 

primary calls and the flow of repeated calls. The flow of these repeated calls are the 

consequences of the lack of successes of previous attempts. The standard queueing model do 

not take into account the flow of repeated calls. Retrial Queues are characterized by the 

following way.  A customer arriving when all servers accessible for him are busy leaves the 

service area. These unsatisfied customers are viewed as joining a virtual queue called ‘orbit’. 

After some random time they repeatedly make the attempt to reach the server and get the 

service. One of the earliest papers on Retrial queues was On the Influence of Repeated Calls in 

the Theory Of Probabilities of Blocking by L. Kosten [1947]. For a systematic account of the 

fundamental methods and results on this topic, we refer to the the monograph by Falin and 

Templeton[14] and the bibliographical information in Artalejo[2, 3,]. A comprehensive 

discussion of similarities and differences between retrial queues and their standard cunterparts 

is given in Artalejo[4]. Comprehensive surveys of retrial queues can be seen in Falin[13] and 

Yang [31]  

The investigation of many of the stochastic processes is essentially very difficult. Except 

for a few special cases explicit results are very rare. Since the equilibrium distribution of the 
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system state is expressed in terms of contour integrals or as limit of extended continued 

fraction, they are not convenient for practical applications. More useful is the implementation 

of the computational probability. By computational probability, we mean the study of 

stochastic models with a genuine added concern for algorithmic feasibility over a wide, realistic 

range of parameter values. Hence, numerical investigation to bring out the qualitative behavior 

of stochastic process is very important. 

The progress in computing and communications made in the last quarter of the past 

century has not only ushered in the “Information Age”, but it has also influenced the basic 

sciences, including mathematics, in fundamental ways. Mathematics can now argument 

classical techniques of analysis, proof and solution with an algorithmic approach in a manner 

that enables the consideration of more complex models with wider applicability, and also 

obtain results with greater practical value to the society. It was strongly supported by the 

significantly increased computing power.  

Among the areas exemplifying all these, a notable one is algorithmic methods for 

stochastic models based on the “Matrix Geometric Method”. Ever since Neuts [24, 25] 

introduced matrix geometric methods in 1970’s interest in this are growing. By the introduction 

of this method, the “Laplacian Curtain” which covers the solution and hides the structural 

properties of many interesting stochastic models y lifted. The matrix geometric methods comes 

under broader heading of computational probability. A wide variety of stochastic models, the 

steady-state and occasionally the transient measures of the underlying process can be 

expressed in terms of matrix R or G. The G matrix is a modified version R matrix in the matrix 

geometric method. The new version namely, “matrix analytic method” was introduced by  

Ramaswami [27]. These matrices are the minimal non-negative solutions to a non-linear 

equation. 

Analysis of a realistic and practical perishable inventory model is difficult and closed 

form solution is almost impossible. Our subject matter is attempting the analytical and 

algorithmic solution of a Stochastic process a perishable inventory model. Our aim is to set the 

tools that go by the name “matrix geometric methods’ if the analytic closed form solution is not 

possible. We develop a FORTRAN code for the performance analysis of such models. 
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CHAPTER 2 

An Inventory Model with Perishable Items Require Positive Service Time 

 

In this chapter, we analyze an inventory model in which there are demands for “new” 

items as well as “perished items” which require repair. We could see lots of real life examples in 

the market of readymade dress materials, ornaments, and vehicles- For example, consider a 

vehicle dealer who sells both brand new vehicles as well as used vehicles. Used vehicles are 

considered as perished items. The service time for these demands may be different. If a 

demand occurs for a brand new item, the dealer can fulfill the demand without any time delay. 

But in the case of a perished item the dealer requires a non-zero service time for processing the 

item. Krishnamoorthy et al [18] considered  the control policies for an inventory model with 

service time.  

The model is described as follows. We assume that there are demands either for perished items 

or those for brand new items. We assume that perished item requires a positive serve time and 

the brand new item requires negligible service time. Even when a service is going on for 

processing the perished item, customers may arrive and ask for brand new items. We also 

assume that the server (the dealer)can serve the customers without interrupting the processing 

of the perished items. In this model, we get analytical solution. Also we use analytical method 

to complete the problem. 

 

This chapter is arranged as follows. In section 2 the model is described and is formulated 

mathematically. In section 3, stability of the system is analyzed and the stability conditions are 

obtained. In section 4, the steady state distribution of the system is investigated. We obtain a 

number of performance measures of the system in section 5. The performance measures help 

us to the system. In the last section, cost analysis of the model is performed. We make use of 

the performance measures and assign suitable cost to them for cost analysis. We construct a 

cost function which is a function of the probability that a customer demands processed items, 

then it is seen to be a convex function of this probability and hence has global minimum. It is 

proved that irrespective of other costs involved, this function is minimum when the probability 

of demanding processed item is very small. This section provides expected cost of running the 

system. The cost analysis help us to control the system optimally. In particular, we prove that 

the optimal reorder level is zero. Numerical illustration are also provided in that section. 

2.1 The Model description and Mathematical formulation  

We consider an (s, S) inventory system positive service time for processing demands for 
perishable items. Demands are assumed to arrive according to a Poisson process of rate λ. Out 
of these arrivals, a fraction λ1 = λϸ,0<ϸ<1 are for  items requiring processing and the rest  
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λ2=  λ (1- ϸ) are for brand new items which does not require any processing. The service time of  
demands for brand new items is negligible. This is exactly as in the case of classical inventory 
models, see for example Hadley and Whitin [15]). In the latter case we say that service rate is 
infinity. This type of inventory systems are  very common.  

A more concrete example is the following: Consider the transaction of electronic goods. 
A few demands will be for assembled (hence requiring service time) items (such as a computer) 
where as the rest of the demands arise for the assembled one. 

In some cases, the processing cost may be heavy.  Hence, the dealer prefers catering 
demands for brand new items (that is, the items requiring no processing). In inventory, 
customer satisfaction and goodwill are prime objectives. So, the dealer has to entertain 
demands for processed items also. If lead time is zero and no shortage is permitted, then a 
queue of customers who need processed item will alone be formed.  Demands for other type 
will be instantly satisfied and hence no queue of such customers get generated. While the 
server is engaged in serving a customer requiring processed items, the demand for the  item 
which requires no processing can be simultaneously satisfied without any  interruption to the 
ongoing service.  Demand processing starts only when that customer is in the head of the 
queue.  
 
We assume that time of processing follows exponential distribution with parameter μ. We 
introduce the following notations. 
N (t)= Number of customers in the system at time t 
 
I (t) = Inventory level at time t,  
 
which ranges over {s, s+1,…S}. 
 
Then {( N (t), I (t)), t εɌ } is a continuous time Markov chain on the set {(o, j )|s ≤ j ≤S -1}U{(i, j 
)|i≥1;s+1≤ j ≤S} which is clearly a level independent quasi-birth-death process(LIQBD). Note that 
if at a service completion epoch, no other customer is left in the system, then if the inventory 
level falls to s, under  
these setup the infinitesimal generator Q of the Markov chain is  
 
                                                                B      A    0     0   …. 
 

 Q=       A2     A1    A    0  .... 

             0       A2    A1   A  .... 

  ⁞                ⁞   
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This is a quasi-Toeplits matrix. The entries are described as follows. Denote by i the set of 

elements in the state space {(i , s+1),(i, s+2),….,(i, S)} for i ≥ 1 and by 0 the set {(0, s), (0, 

s+1,…..,(0, S-1))}. We call the first component in a pair, the level and the second coordinate is 

referred to as phase. Note that when a demand for unprocessed item arises there is a transition 

within a level and when the service of a customer demanding processed item is completed 

there is a decrease in level by one unit (the served customer leave the system). Similarly due to 

arrival of a customer to the system who requires processed item, the level increases by unit. 

Thus the LIQBD process under consideration is skip-free to the left as well as to right.  

           Now we describe the entries in Q: 

B    = 

                            -λ          0          0   …   0          λ(1- p) 

                          λ(1- p)    -λ         0   …   0            0 

                            0       λ(1- p)    -λ        0             0 

                                                      ⁞ 

                            0         0            0        -λ            0 

                            0         0            0   … λ(1- p)     -λ                                 

Describes transition within zero level; 

                                                          λp      0     0    …   0    0 

                                                          0        λp   0   …    0    0 

A   =                                                  ⁞      

                                                          0         0     0    …  λp   0 

                                                          0         0     0    …  0    λp   

 

Describe transition from level i – 1 to level i, i ≥ 1; 

         -(λ+µ)          0               0                               0        λ(1- p)     

                                                   0        λ(1- p)     -(λ+µ)      …                   0            0 

 A₁ =                                            ⁞      

                                                   0            0                0           …                -(λ+µ)      0 

                                                    0            0               0           …               λ(1- p)    -(λ+µ)                   
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Which describes transitions with level i, i ≥1; and  

                                                0     0     0   …   …   0    µ 

                                                µ     0     0   … …     0    0 

                                                0    µ      0    ……     0    0 

 A₂ =        ⁞ 

                                               0    0      0    ……     0     0  

                                               0    0       0   ……      µ    0 

 

 

 

Stands for transition from level i to i – 1, i ≥1. 

All these are square matrices of order S – s.  note that these matrices have nice structure. It is 

these structures, especially that of A₂ that prompted us to conjecture that the system is 

analytically solvable which in turn took to a matrix E defined as  

 

 

                                0       1      0   …    0   

                                0       0      1   …    0 

            E =               ⁞ 

                                 0      0       0   …   1 

                                 1      0       0    …   0  

 

2.2 Stability Condition and Steady State Probability 

In this section, we  examine the stability of the system. Let A be the matrix defined by 

A = A  +A₁ +A₂ = 
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-((1- p) λ+µ)           0                              …                0         λ (1- p) +µ 

   λ (1- p) +µ       -((1- p) λ+µ)                 …              ⁞               0 
 
          0            λ (1- p) +µ                   …              ⁞               0      
 
          ⁞     ⁞             ⁞ 
 
            0                                                           λ(1- p) +µ      -((1- p) λ+µ)       

 

Let π= (π₁, π₂,…… πS-s)be the stationary probability vector associated with the generator A, ie.,  

πA = 0. Then we immediately get π₁ = π₂ = … = πS-s = 1/Q where Q = S-s, the order quantity at 

each order placement epoch. Then we have the system stability condition given by the relation 

πA e < πA₂e which results in λp <µ where  = (1…….1 )’.  

Thus we have  

THEOREM 3.1. The system is stable if and only if  λp < µ. 

Note that λ₂ = λ (1- p) does not play any role in the stability condition. This is attributed to the 

fact that the fraction λ₂ of customers are instantly served (ie ,. Their rate of service is infinity) as 

they need only unprocessed item requiring negligible service time. Thus the theorem says that 

even λ is very large steady state distribution the system can be stable provided p is 

corresponding small and λp < µ. 

Now let  X= ( X , X₁,X₂….) be the stationary probability vector of the LIQBD process  Here vectors 

Xi s’ are of order S-s. Then XQ = 0 and Xe’ = 1 where e = (1, 1, …) whose components are all 1s’. 

the above relation leads to : 

X B  +X₁A₂=0 

Xi - ₁A  + Xi +A₁ + Xi+₁+A₂ =0  for i ≥1 

The first of these gives X₁ = X (-B )A₂ˉ¹. 
 
Since in the classical (s,S) inventory models with renewal/compound renewal demands, 
where lead time is zero and shortage cost is infinity the long run inventory level 
distribution is uniform, we try a solution of the form X  = γ(1,1,….. 1). Then X₁= γ(1,1,….. 1).(-
B )1/µE, where γ is a constant to be determined. The above relation, on simplification, gives 
X₁=(λϸ /µ)X0 
On simplification, the steady state probability Xn =(1- λϸ / µ)n  (1/Q,,1/Q,,…..1/Q). 
The above expression provides a product form solution. 
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CHAPTER 3 

A Retrial Queue with Perishing of Customers in the Orbit 

 

In this chapter, we investigate a retrial queueing model in which the units (customers) in 

the orbit undergoing decay or perishing. The model is motivated by the following interesting 

examples. 

 Consider a car servicing station where car owners are registered for usual service. The 

registered customers are considered to be in a virtual queue called ‘orbit’.  If the server is free 

at an arrival the customer directly goes to the server and the service begins. If the customer 

finds the server busy at an arrival, it goes to the virtual queue called orbit. From the orbit, the 

customer is again trying for service. Immediately after each service a competition takes place 

between the primary (new) customers and the secondary (orbit) customers. In the meantime, 

the customers waiting in the orbit undergoing some sort of ‘perishing’. Such customers requires 

immediate service or in fact the repair. In such situations, immediately after each service, those 

customers are taken for service. 

 Another important example is people waiting in the ‘orbit ‘for usual medical checkup. 

There may arise situation where the customers waiting in the orbit require immediate medical 

attention. This is exactly the same case as in the previous example. 

3.1 Model 1: General Case 

We consider a single retrial queueing system, in which customers are arriving according to a 

Poisson process with rate λ. If an arriving customer finds the server free, it directly enters into 

service. The service rate is assumed to follow exponential distribution with rate ν. On the other 

hand, if the arriving customer finds the server busy, it goes to the virtual waiting line called the 

orbit. The customers in the orbit are also repeating their attempts to get into the server. The 

retrial process is  assumed to follow Poisson distribution with µ. This is the typical retrial 

queueing system. In the men time, the customers in the orbit are undergoing ‘perishing’ and 

turns into a situation when it requires immediate service. The perishing process is assumed to 

follow Poisson distribution with rate θ. We consider the most general case in which the 

perishing and the retrial rate depends on the number of customers present in the orbit. So, the 

flow from the orbit to the server is α+n(µ+θ), where n is the number of customers present in 

the orbit.It is quite realistic to assume that he retrial rate and the perishing ratedepends on the 

numbers of units in the orbit. Though these assumptions make the mathematical formulations 

cumbersome and analysis complex, we get the closed solutions in terms of Hyper Geometric 

Functions. The classical retrial set up, each service is preceded and followed by an idle period. 

This idle period is terminated by the arrivalfrom the orbit or by the primary customer. But in 
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our problem, immediately after the service, if there is a perished customer in the orbit, the 

server takes the perished one for service. In our model, after the completion of each service, a 

competition takes place between primary arrival, secondary arrival from the orbit and perished 

customer from the orbit. 

Mathematical Formulation and Steady State Analysis of the Model 

Let N(t) denote the number of customers in the orbit, and C(t) = 0, if the server is free and C(t) = 

1 if the server is busy. Then N(t) = 0,1,2,……..The (C(t),N(t)) forms a continuous time Markov 

chain. 

 Set of statistical equilibrium equations are  

[λ +α(1 δ��)+n(µ+θ)]��� = ν���                       (1) 

(λ+ ν) ���   = λ��� + λ��,��� + [α(n + 1)(μ + θ)]��,���            (2) 

Using (1) eliminate probabilities of ���  from (2) and then it reduces to  

ν [α+n(µ+θ)] ��� – λ[λ+ α+(n-1)( µ+θ)] ���       

     

(λ+ ν) ���   = λ���   + λ��,��� + [α+(n+1)( µ+θ)] ��,���                        (3) 

This implies that         

ν [α+n(µ+θ)] ��� – λ[λ+ α+(n-1)( µ+θ)] ��,���    

ie, ���  = 
�[��(���)(���)]

� [���(���)]
 ��,���  

�� ∏ [
� ��(�����)��(���)

��(���)(���)
]���

���  ���                      (4) 

Now from (1), and (4)we obtain  

���  =�
��� ∏ [

� ����(���)

���(���)
]�

��� ���                       (5) 

Applying the normalizing condition ∑ ��� 
�
��� + ∑ ��� 

�
���  =1 

We get,  (P00)-1 

=  1+ 
��

�����
  2F1 (1, 

���

���
) + 1 ; 

�

���
 +2; s )            

+s 2F1 (1, , 
���

���
 +1 ; 

�

���
+ 2 ;� )                              (6)    

Partial generating function �� (�) = ∑ �� ���  
�
��� and  

�� (�)= ∑ �� ���  
�
��� are given by  
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�� (�)= ���  {1+ 
���

�����
  2F1 (1, 

���

���
) + 1 ; 

�

���
 +2; s� ) }        (7) 

And ���(�)= s���  2�1{1, 
���

�����
  2F1 (1, 

���

���
 + 1 ; 

�

���
 +2; s� ) }        (8) 

If N(t) denote the number of customers in the orbit then the generating function of its 

stationary distribution is given by P (�)  = ��(�) +��(�)  

In particular, the first factorial moment of the number of customers in the orbit is  

    Type equation here. 

     ��   =  E[N(t)]   = 
�

�
, where                      (9) 

A = λs 2F1(1, 
��� 

���
+ 1 ;

�

���
+ 2;� ) 

+(λ+ α + μ + θ) �� 2F1 (2, , 
��� 

���
+ 2;

�

���
;�) 

+
�(�������)��

���(���)
 2F1 (2, 

��� 

���
+ 2;

�

���
+ 3;� 

And B = (α + μ + θ) + (α + μ + θ)s 2F1 (1, 
��� 

���
+ 1;

�

���
+ 1;� ) 

+ λs 2F1 (1,
��� 

���
+ 1;

�

���
+ 2;� ) 

Expected cycle length = E(T)  = 
�

����
 

Expected idle time in a cycle E(Id) =    ∑
���

���

�
��� , 

�

����(���)
 

(Here the server is considered to be consisting of two mechanisms one for service and the other 

for search. We consider the idleType equation here. time for service mechanism only.) 

 = ∑ ���
���  ∏ [

�����������(���)

��(���)(���)
]���

���
�

�����(���)
 

�

(���)�
{ 3F2(1, , 

��� 

���
+

��� 

���
+

�

���
+ 1

��� 

���
+ 1;�)-1} 
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3.2 Model 2 ( A Special Case) 

To occupy the server when it is free:  

a) Due to a primary arrival with rate λ 

b) Due to an orbital arrival with rate of nµ; (when n customers are in the orbit).  

c) Due to an arrival from the orbit by search procedure with rate nθ; (here we assume that 

the server is aware of the status of the orbit number that search take place only when 

the orbit is non-empty). 

���(�+ �) =���(�) λ���(�) t+ ����(�) � 

���
� (�) = - λ���(�) � + ����(�) � 

 ���(�+ �) =���(�)  (λ+ nμ+ nθ)���(�) �+  ����(�)  

���
� (�)  = (λ+ nμ+ nθ)���(�)+  ����(�) 

���(�+ �) = ���(�)  (λ+ �)���(�) �+  ����(�) �+  λ���(�) ()�+ (μ + θ) ����(�) t 

���
� (�)=  (λ+ �)���(�)+  λ���(�)+ (μ + θ)���(�) 

���(�+ �) =���(�)  (λ+ �)���(�) �+  λ��,���(�) �+  λ���(�) (�)+ (� + 1)(μ +

θ)��,���(� 

���
� (�)=  (λ+ �)���(�)+  λ��,���(�)+ λ���(�)+ (� + 1)( μ + θ)��,���(�) 

Set of statistical equilibrium equations are 

0 =- λ��� +  ����                                                                      ……………….  (1a) 

0 = (λ+ nμ+ nθ)��� +  ����      n ≥ 1                        ………………… (1b)      

0 = -( λ+ �)��� + λ��� + (μ + θ)���                               …………………. (2a) 

 

0 = -( λ+ �)��� + λ��,��� + λ��� (� + 1)( μ + θ)��,��� Type equation here.       n ≥ 1                                                                                                          

………………….(2b) 

Thus, ��� = 
(�������)

�
��� Type equation here.n ≥ 1           …………………  (3) 

                ∴    ��,��� = 
(��(���)�(���)

�
����� n ≥ 2           ………………..  (4) 
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Solving the above equation, we get  

For all n ≥ 2,  n (μ + θ) ���� – �[λ+ (n 1)(μ + θ)]�����  = 0      ……..(5) 

 

� (μ + θ)��� ����� = 0                                                           …………………(6) 

 

               ���  = 
��

� (���)
��� = ρ

�

(���)
���                            ………………… (7) 

And        ���= 
�[��(���)�(���)]

� �(���)
�����  

= ρ
��(���)�(���)

� (���)
�����           n ≥ 2                                            …………………. (8) 

Solving, are get  

���   =
��

�!(���)�
∏ [λ+ (n 1)+ (μ + θ)�
��� ]���  n ≥ 0      (9) 

���         =   
����

�!(���)�
∏ λ+ i(μ + θ)�
��� ���  n ≥ 0           (10) 

Applying the normalizing condition  

∑ ���  
�
��� +∑ ���  = 1�

���  

 

�∑
��

�!(���)�
∏ λ+ (n 1)+ (μ + θ)�
��� +�

���
�∑

����

�!(���)�
∏ λ  + i(μ + θ)�
��� ��� 

�
��� =1} 

                                                                                                                                                        (11) 

Now ∑
��

�!(���)�
�
��� ∏ λ+ (n 1)+ (μ + θ)�

���  

 

             =    (1 ρ)
��

���          (12) 

Now, ∑
����

�!(���)�
∏ [λ  + i(μ + θ)]�
���

�
���  

= ρ (1 ρ)μ
��

��
��        (13) 

Thus ��� 
��   =  (1 ρ)μ

��

��
��{(1 ρ)+  ρ} 

Ie, ��� 
��   =  (1 ρ)μ

��

��
��{(1 ρ)+  ρ} 

Ie, ��� 
��   =  (1 ρ)μ

��

��
�� 
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Ie, ��� 
��   =  (1 ρ)μ

��

��
��                      (14) 

The corresponding partial generating functions are : 

��(�) = ∑ ���
�
��� �� 

   =   ∑
��

�!(���)�
�
��� ∏ [λ  + (i 1)(μ + θ)]���

�
��� �� 

Ie, ��(�) = (1-ρ) [
���

����
]

�

���                            (15) 

��(�) = ∑ ���
�
��� �� 

= ∑
����

�!(���)�
∏ [λ  + i(μ + θ)]�
���

�
��� ��� 

��(�) = ρ [
���

����
]

�

��� + 1        (16) 

the stationary distribution of the number of sources of repeated calls �� = P[n(t) = n] 

p(�) =��(�) +��(�) 

=(1+ρ -ρ�)  {
���  

����
}

�

���
��

                     (17) 

Thus fractional moments ��  = E[N(t)]n of the queue lengths are given by  

Ie, �� = p(1) 

In particular, ��= p(1)   

Ie , E[N(t)] =  ��  

                    = -{
�(� �(���))

(���))(����)
} 

��   = p(2)(1)  =  
(�����)��(���(���)�)

(���)�(����)�
 

Var (N(t)) =�� �� ���  
� 

      =
�(��(���)�(�������))

(���)(�����)
 

The stationary distribution of the number of the customers is the system Qn =P[K(t)] = n 

has the generating function  

Q(�) =  �� (�) + ���(�) 

 = [
���

����
]

�

���
��
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��= Q(�) (1)   =  1 +

�

���

���
ρ 

Thus E[K(t)] = 1 +

�

���

���
ρ 

Thus var (K(t)) = �� + �� �� 
� 

                         = 
(�����)�

(���) (����)�
 

The blocking probability �� = ��(�) = ρ 

 

3.3 Particular Case of 3.1 and 3.2 

In this section we consider the special cases of 3.1 and 3.2 in which the retrial rate and the 

perishing rate are independent of the number of units present in the orbit. Assumptions are 

exactly the same as those in sections 3.1 and 3.2 

 In this case, the set of statistical equilibrium equations are             

λP  = νP₁         ………………….(1. a) 
 
 (λ + ηµ +ηθ ) P�� = nνP��      …………………..(1.b) 
 
 
(λ + ν)P₁  = λP₁  + (µ + θ) P ₁      ……………………(2.a) 
 
(λ + ν)P�� = λ P�,��� + λP�� +( n+1 )(µ +θ)��,���    …………………….(2.b) 
 
Thus, 
 
( n+1 ) (µ +θ)νP�,��� -λ(λ +n(µ +θ))P��  = n (µ +θ)ν P�,�  - λ(λ +n(µ +θ))P�,��� 
 

P ₁ = �
�

� ��
 P  

 

P��= � (
��(���)(� ��)

�(� ��)
)P�,��� 
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We get 
 

P��= 
��

�!(� ��)�
∏ (� + (� 1)(μ + θ))P�
���  

 
and 

P��= 
����

�!(� ��)�
∏ (� + �(μ + θ))P�
���  

 
Applying the normalizing condition ∑ �0��

���  + ∑ �1��
���  =1  

 
We get 

P  = (1 �)
���

� ��  
 
We consider the  Partial generating functions  
 
P (z) = ∑ �0��

��� �� 
           

          =(1- �)[
�(�� �)�

�(�� ��)�
] �

� ��
 

and 
 
P₁(Z) = ∑ �1��

��� �� 
 
 

          = ��
�(�� �)�

�(�� ��)�
�1 + �

� ��
 

 
 
 The stationary distribution of the sources of repeated calls q� =  
 P[N(t)=n] has the generating function P(z) = P (z)+ P₁(z)  
                                                                   

                                                      =(1 + � ��) �
�(�� �)�

�(�� ��)�
�1 + �

� ��
 

 
The factorial moments �� = �[�(�)]� of the queue length are given by  
                                         

                                          �� =  �(�)(1) 
 

In particular �� = �[�(�)]  = 
�[��(���)]

(���)(���)
 

 
                

                         �� =  
(�����)��[���(���)�]

(���)(���)�
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Var [N(t)] = �� + �� ��
� 

 
 

                   = 
�[��(���)���������]

(���)(���)�
 

 
The stationary distribution of the number of customers in the system �� = 
P[K(t)=n] has generating function Q(z) = P (z) + z P₁(z) 
 

                                                            =�
(���)

(����)
�1 +

�

���
 

 
 Its factorial moments Ψ� =  E[K(t)]n of the queue length are given by  
  

                                         Ψ� = �(�)(1) 

In particular Ψ��  E[K(t)] =
 (�����)�

(���)(���)
 

                 Ψ� =  
(�����)(�������)��

(���)�(���)�
 

Var [N(t)] = Ψ� +Ψ� Ψ� 
� = 

(�����)�

(���)(���)�
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CHAPTER 4 

 

A Retrial Queueing Model with Server Searching for Perishable Orbital 

Customers 

 

Introduction 

 In this chapter, we consider a retrial queueing model in which the customers in the orbit 

are perishable. So, the server himself search for customers in the orbit and thereby optimize 

the service and reduce the loss of customers from the orbit. These types of models are very 

common in communication networks. The signals waiting in the orbit for service may lose its 

relevance as time goes on. Sometimes long waiting may weaken the strength of the signal. In 

these situations, the ideal model is which reduce the idle time of the server. This can be 

achieved by the ‘search ‘ mechanism introduced by Artelejo et al [5 ] in the retrial queueing 

context. A concept of search was introduced in the classical queueing set up by Neutes and 

Ramalhote [26]in 1984. The investigator himself with others [8, 12, and 17] extended the 

possibilities of the search mechanism to more general models. Immediately after the service 

completion of each service the server himself goes for search of perishable orbital customers 

with some assigned probability. The design and control of such real life models with perishable 

orbital customers can be effectively done by estimating of this probability. 

The Mathematical Formulation and Steady State Analysis of the Model 

 In this chapter, we consider a retrial queueing system in which perishable customers are 

arriving according to a Poisson process with parameter λ. If the customer finds the server busy, 

it goes to the orbit and repeats the attempts to get the service. The retrial process is also 

assumed to follow the Poisson process with parameter µ. The service is assumed to follow the 

exponential distribution with parameter ν. This is the classical retrial queueing set up in which 

each service is followed by an idle time. Though the customers in the orbit are bound to perish 
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and eager to get service as soon as possible, they may fail to reach the server even when the 

server is idle. This is simply because of the ‘ignorance’ of the customer about the state of the 

server. This is a challenge in the real life models which reduce the efficiency of the model. We 

use the search mechanism introduced by Artalejo, Joshua and Krishnamoorthy[5] to overcome 

the above challenge. Upon completion of a service, the server search for customers in the orbit 

with a probability p. The search process is assumed to follow exponential distribution with 

parameter β. If a customer is found, a service is initiated. The server remains idle with 

probability 1-p. In this case, new service will be initiated only a primary arrival or by a retrial 

customer from the orbit.   

Let C(t) be the status of the server. 

That is, C(t) = 0 ; if the server is idle 

             1; if the server is busy by searching 

                         2; if the server is busy by serving. 

Let N(t) denote the number of customers in the orbit. 

That is, N(t) =0,1,2,…………….. 

(C(t), N(t)) describes a continuous time Markov chain. 

 

 

The   infinitesimal generator  Q of the Markov chain has the form  

 

Q           =      ���              ���          0            0             0          0…………………………….. 

                       ���           ���        ��             0            0           0……………………….. 

                           0           ���            ���           ��            0            0…………………………. 

                            0           0            ���       ���           ��           0………………………… 

                             0           0              0          ���             ���           �� ………………….. 

                              …………………………………………………………………………………………… 

 

Where  ���              = �
� �
� (� + �)

�  ;    ���   =   
0 0 0
0 0 �
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               ���       =  
0 �
0 �
0 0

    ;                      ��      = 
0 0 0
0 � 0
0 0 �

    

                  

                     ���         =    

(� + ��) 0 �
0 (� + �) 0

�(1 �) �� (� + �)
       ; � =1,2 …… 

 

                      ���         =   
0 0 ��
0 0 �
0 0 0

         ;   � = 2,3……… 

 

Let  ��� denote the steady state probability of the state at an arbitrary time and let x be a raw 

vector with elements ��� .When the queue is stable, x is the unique solution to xQ =0 and xe= 1 

where e is the column vector with all elements = 1 

The system of equation given by xQ = 0 and xe =1 can be truncated at a sufficiently large value 

of I, say M and the resulting finite system can be solved for the equilibrium probability vector. 

M is chosen in such a way that the loss of probability mass due truncation is small. (no 

analytical basis for the choice of M is available and a trail and error method id adopted). 

Algorithmic solution :-   

For small values of j, the likelihood of an idle server and therefore the likelihood of a retrial 

request being successful is not small. As j increases, the probability of a successful retrial 

request progressively decreases. When j  is sufficiently large, a majority of the retrial repeats 

fail to find free server and do not result in a  large of state. Further increase in j mainly adds to 

the number of unsuccessful retrial request. Under their condition , if the number of customers 

who can generates retrial repeats is restricted to an appropriately chosen number N, the effect 

on system dynamics and the equilibrium probability vector is minimal. Except when the retrial 

rate is extremely small, we can expect N to be substantially smaller than the value of M 

required by the direct truncation to achieve the same degree of accuracy. 
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The approximation modifies the matrix Q to the following form. 

Q =        B00   B01   0   0   0   0     …………………………………………………………………………………… 

             B10   A11   A0  0   0   0     ………………………………………………………………………………….. 

             0      A22  A12  A0 0   0    …………………………………………………………………………………… 

            ………………………………………………………………………………………………………………………… 

            0      0       0    0   0    0  …………………A2,N-1    A1,N-1   A0   0     0     0     0     0 …………… 

            0      0       0    0   0     0  …………………0          A2       A1    A0   0     0     0     0 …………… 

             0      0       0    0   0     0   …………………0          0        A2    A1   A0   0     0     0 ……………    

            0      0       0    0   0     0  …………………0           0        0      A2   A1   A0   0     0 ……………  

           …………………………………………………………………………………………………………………………. 

 

Where A1 = A1N and A2 = A2N  

Let  x = [ x0   x1   x2   ………. ] 

       Such that  x0 = [ x00   x20 ]  ;   x1 = [ x01   x11   x21 ]  ;  x2 = [ x02   x12   x22 ]   ……………… 
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Suppose that there exist a constant matrix R such that 

������ = ���� R� ; K≥1            (1) 

The matrix R is the unique non- negative solution with spectral radius lunation.  

less than 1 of the equation. 

R�  �� +R ��+ �� = 0                       (2) 

Theoretically, R is given by lim�→�  ��   whrer tha sequence { �� }is defined by  

                          ��  = 0                                               (3) 

                          ����  = -����
�� -��

�����
��                 n ≥ 0      (4) 

The sequence of  ��  is monotone sothat R could be evaluated from (3) and (4) by successive 

iteration. 

Stability condition is given by  

θ�� e< θ�� e                     (5) 

where  θ is the invariant probability vector of the matrix A =�� +  ��+��, given by  

A =

(� + �μ) 0 (� + �μ)
0 � �

�(1 �) �� �
                           (6 ) 

Ie, A is irreducible and 

 θ A  = 0                                                               (7)                 

 θe  = 1                                                                 (8) 

 

[θ� θ�θ�]       

(� + �μ) 0 (� + �μ)
0 � �

�(1 �) �� �
       =   [ 0 0 0] 

 

(� + �μ)θ�+ �(1 �) θ�        = 0                         (9) 

�θ�+ ��θ� = 0                                                       (10) 

(� + �μ)θ� + �θ� - �θ� = 0                                (11) 

θ� +  θ� + θ� = 1                                           (12) 

θ� = 1-θ�  θ�       
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solving    

(� + �μ)θ� +  �(1 �)[ 1-θ�  θ�]  =0  

�θ�+  �� [1-θ�  θ�]    =    0 

     [ + µ  �(1 �) θ�+[ �(1 �)] θ� = �(1 �)                 (13) 

��θ� + ( � +   ��) θ� = ��                                 (14) 

Solving  

θ� = 
��(���)

(����)(�� �  ��)���(���)
                                         (15a) 

From (9) ,     θ� =
(����  )

�(���)
  θ�  

Ie, θ� = 
�(����  )

(���� )( ��  ��)��(���)
                                           (15b) 

From (10)     θ� = 
��

�
   θ�   

Ie, θ�   =    
��(����  )

(����  )( ��  ��)��(���)
                         (15b) 

 

 

(θ�  θ� θ�)  
0 0 0
0 � 0
0 0 �

     
1
1
1

             =         [θ� +  θ� + θ�]     
0 0 ��
0 0 �
0 0 0

         
  1
  1
  1

 

 

� ( θ� + θ�)<  �μθ�+ �θ� 

�[
�� + ��

�
] <

(�μ + ��)

(� + �μ  )
 

 

�[
�����

�
] < � as N→ ∞, which is the stability condition  

Since R is a function of N, we shall write R(N) instead of R. Now, post multiplying (2) by e,  

R�  ��� +R ���+ �� �= 0       

 �� �          = R�  ��� +R ���. 

                   =  R ���+ R[ �� �   R ��� ]  
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 �� �          = R ��� 

Replace R by R(N) 

Ie,  �� �   = R(N)    ���                    (16) 

Ie,         
0
�
�

  =   R(N)   
�μ
�
0

                         (17) 

 

Evaluation of  R(N):-  

Using (3) and (4), we can numerical evaluate R. However, newts gave a better initial solution in 

order to expediate the convergence to   R. such an initial solution is given by �� = �eu, where � 

is the spectral  radius and u is the curresponding normalized left  eigen vector of R respectively. 

� ��� � can be computed without explicitly computing  R, as follows:  

Let Δ denote a diagonal matrix with elements equal to the diagonal elements of ��  

Ie, Δ = 

(� + �μ) 0 0
0 (� + �) 0
0 0 (� + �)

 

 

 Now ,rearranging equation as R Δ =   ���� +  �(�� + Δ)+ ��       (18) 

R Δ =   ���� Δ
�� +  �(��Δ

�� + I)+ �� Δ
�� 

Put �� Δ
��   =�� ; ��Δ

�� + � =�� and �� Δ
��  =�� 

Then R = ����+ ��� + ��         (19) 

Let � (�) =�� ��+�� �+ ��            (20) 

Let x(�) be thespetral radium for 0≤ � ≤1. 

Then, it can be shown that � satisfies �(�)= � 

By applying elementary procedures (such as bisection method) � can be evaluated as the sort 

of the equation �(�)= � in (0,1) 

In this present problem, we can use the bisection to the evaluate �, that can be described as 

follows: 

We restart with the lower and upper bounds say ��,���  ��, for the value of �. We then divide 

the interval (��,��,)  at its mid point �� and determine whether � lies in (��,��,,)  or  ( ��,��,,)  .  

Elsners algorithm to evaluate the spectral radium is used to determine �(��)  
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(by newts).  Then we obtain a tighter bounds for �, and using the tighter bounds, the bisection 

method is repeated. These interactions are continued until the bounds are closed enough for 

their midpoint to yield a sufficiently accurate estimate of µ. The initial value of ��, can be taken 

to be 1 because  �(1). The initial value of ��, can be taken as a small positive number. If 

�(1)≤ ��, we can set ��,=��, 

 And try a smaller ��,(say 
��,

�
) 

Choice of N :- 

In this method the equilibrium possibilities of the states with i≥ N depend largely on  �(�)(the 

spectral radius of R(N)). Therefore to minimize the effect of the approximation on the 

equilibrium possibilities, N must be chosen such that �(�) is sufficiently close to �(∞).  For 

this, a trail and error method is adopted. Starting with an initial value N. until  �(N)- � (∞) 

become a quantity smaller than a predetermined small value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

We develop a FORTRAN code for a perishable inventory model with the following assumptions. 

The demand process follows the Phase (PH) type distribution, replenishment follows Poisson 

distribution, and perishing time follows exponential distribution. 

 

C PROGRAM FOR G, MATRIX  

DIMENTION A0 (100,100),A1 (100,100), A2 (100,100), A11 (100,100) 

A12 (100, 100), H (100,100),XD(100, 100) ,XD0( 100, 100), XDI(100, 100) XD2(100, 100), 

XL(100, 100), U1(100,100), U2(100,100), U(100, 100), XM(100,100), ZO(100, 100), 

ZI(100,100), G1(100,100),G(100,100),T(100,100) 

 WRITE (*,*)’ ENTER THE ORDER OF THE MATRICES N’ 

 READ (*, 1)N 

1  FORMAT (13) 

 WRITE (*, *)’ ENTER THE MATRIX A0’ 

 DO 10 I= 1, N 

10 READ (*,2)  (A0 (I, J ) , J= 1 , N) 

2  FORMAT (100F15.5) 

 WRITE  (*,*)’ ENTER THE MATRIX  A1 

 DO 20 I= 1, N 

20  READ (*,3)  (A1 (I, J ) , J= 1 , N) 

3  FORMAT (100F15.5) 

 WRITE  (*,*)’ ENTER THE MATRIX  A2 

 DO 30 I= 1, N 

                     30 READ (*,4)  (A2 (I, J ) , J= 1 , N) 

4   FORMAT (100F15.5) 

 DO 35 I= 1,N 

 DO 35 J=1,1 

 XD(I,J)=1.0 

35    CONTINUE  
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   CALL SCALAR (A1, N, N, -1.0,A11) 

   CALL XINVERSE (A11, N, A12) 

    CALL MATRIXM (A12,A0, N, N, N, H) 

   CALL MATRIXM (A12, A2, N, N, N, XL) 

  DO 40 I=1,N 

   DO 40 J= 1,N 

 sXD(I, J)= XL(I,J) 

40  CONTINUE  

 DO 50 I=1, N 

 DO 50 J=1, N 

 T(I,J) = XL(I, J)   

50  CONTINUE 

200  CALL MATRIXM (H,XL, N, N, N, U1) 

   CALL MATRIXM (XL, H, N, N, N, U2)   

  CALL MATRIXMADD (U1, U2, N, N, U) 

  CALL MATRIXM (H, H, N, N, N, XM) 

 CALL XID (U, N,Z0) 

 CALL XINVERSE (ZO,N, Z1) 

 CALL MATRIXM (Z1, XM,N, N, N, H) 

 CALL  MATRIXM(XL, XL, N, N, N, XM) 

 CALL MATRIXM (Z1, XM, N, N, N, XL) 

 CALL MATRIXM (T, XL, N,N,N,G1) 

 CALL MATRIXADD (G, G1, N,N, G2) 

 CALL MATRIM (T, H, N, N, N, T1) 

  CALL MATRIXM (G, XD, N, N , 1,XD0) 

 CALL SCALAR (XD0, N, -1.0,XD1) 

 CALL MATRIXMADD (XD, XD1, N, 1, XD2) 
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 CALL XNORM (XD, XD1, N, 1, XD2) 

 IF (XD3.GT.0.00000I) THEN 

 DO 70 I =I,N 

 DO 80 J=I,N 

 G(I,J) = G2(I,J) 

 T(I,J )= T1(I,J) 

80  CONTINUE 

70  CONTINUE 

 GO TO 200  

 END IF  

 DO 60 I=1,N 

 WRITE (1,5) (G2, I J) J = 1, N) 

 FORMAT (100F15.5) 

 CONTINUE  

 STOP 

 END  

 

C                                          PROGRAM MATRIX ADDITION 

                           SUBROUTINE MATRIXADD (A, B, M, N, C) 

                            DIMENSION  

A(100,100), B(100,100), C(100,100), AI(100,100), B1(100,100) 

 DO  4010  I= 1,M  

 DO  4010 J= 1, N  

 A1(I,J)= A (I,J) 

 B1 (I, J)= B (I,J) 

4010  CONTINUE 

 DO  4030 I=1,M  



36 
 

 DO 4030 J=1,N 

 4030 C(I,J ) = A (I, J ) + B ( I , J ) 

 RETURN  

 END 

 

C   PROGRAM FOR MATRIX MULTIPLICATION  

 SUBROUTINE MATRIXM (A, B, M, N, C) 

 DIMENSION  

A(100, 100) B(100, 100) C(100, 100) , A(100, 100), B1(100,100)  

 DO 3010 I= 1,M 

 DO 3010 J=1,N 

 A1(I,J ) =  A(I,J ) 

3010  CONTINUE  

 DO 3020 I= 1,N 

 DO 3020 J=1,L 

 B1(I,J) = B (I,J ) 

3020  CONTINUE  

 DO 3030 I=1,M 

 DO 3030 J= 1, L 

 C (I,J) = 0.0   

 DO 3030 K= 1,N 

3030  C (I,J )= C (I, J )+A (I,K)*B (K,J) 

 RETURN 

 END  

 

C   PROGRAM FOR MATRIX INVERSE   

 SUBROUTINE XINVERSE (A, N, B) 
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 DIMENSION A(100, 100) , B (100 ,100) , A1(100, 100)  

 DO  1010I= J, N  

 DO  1010 J = 1,N  

 A1 (I,J ) =A (I, J ) 

1010    CONTINUE  

 DO 1020 I= J, N  

 DO  1030 J = 1,N 

 B(I, J ) = 0.0  

1030  CONTINUE  

 B (I, I ) = 1.0  

1020  CONTINUE  

 DO 1040 K= J, N  

 DO  1050 I= 1,N  

 IF (I.EQ.K) GO TO 1050  

 R=A (I,K )/ A(K,K ) 

 DO 1060 J= 1,N 

 A(I,J ) =A  (I,J ) –R *A(K,J ) 

 B (I,J )= B (I,J )-R *B (K, J ) 

1060  CONTINUE  

1050  CONTINUE  

1040  CONTINUE  

  DO 1070 J= 1,N 

 DO 1080 J= 1,N 

 B(I,J)= B (I,J )/ A (I,I ) 

1080  CONTINUE  

1070  CONTINUE  

 DO 1090 J= 1,N  
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 WRITE (*, 1003) (B(I, J ), J=1, N ) 

1003   FORMAT (*, 100F15.5) 

1090  CONTINUE  

 RETURN 

 END  

 

C   PROGRAM FOR SCALAR MULTIPLICATION OF A MATRIX   

 SUBROUTINE SCALAR (A, M, N, Z, B) 

 DIMENSION  

A(100, 100) B(100, 100) C(100, 100) , A1(100, 100),  

 DO 2010 I= 1,M 

 DO 2010 J= 1,N 

 A1(I,J)= A(I,J ) 

2010   CONTINUE  

 DO 2020 I= 1,M 

 DO 2030 J= 1,N 

 B(I,J) = Z*A(I,J) 

2030  CONTINUE  

2020  CONTINUE 

 RETURN 

 END 

 

C   PROGRAM FOR NORM OF A MATRIX   

 SUBROUTINE XNORM (A, M, N, XE) 

 DIMENSION A(100, 100) , A1(100, 100),  

 DO 5010 I= 1,M 

 DO 5010 J= 1,N 
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 A1(I,J)= A(I,J ) 

5010  CONTINUE  

 BIG=ABS (A(1, 1)) 

 DO 5020 I= 1,M 

 DO 5020 J= 1,N 

 IF (BIG. LE. ABS (A(I,J))) BIG= ABS (A(I, J)) 

5020  CONTINUE  

 XE= BIG 

 RETURN 

 END  

 

C   PROGRAM FOR  I-A 

 SUBROUTINE  XID (A,N, XI) 

 DIMENSION  A(100, 100) ,XI(100, 100) ,  A1(100, 100),  

 DO 6010 I= 1,N 

 DO 6010 J= 1,N 

 A1(I,J )=A(I,J) 

6010  CONTINUE  

 DO 6020 I= 1,N 

 DO 6020 J= 1,N 

 XI(I,J)=-A(I,J) 

 XI(I,I)= 1.0-A(I,I) 

6020  CONTINUE  

 RETURN 

 END 
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Conclusion 

The project was mainly proposed to study a perishable inventory model. The 

investigator aimed to control and design inventory models with perishable commodities using 

the performance measures thus obtained.  The target was achieved for three general models 

and some of their variants.  

In the chapter 2, we considered an (s,S) inventory model in which the perished items 

require a positive service time for repair. Stability of the system was fully analyzed. It was 

interesting to note that that process under consideration is a  Level Independent Quasi Birth 

Death Process (LIQBD) and the underlying Markov chain is a quasi-Toeplitz matrix. We 

successfully obtained the product form solution. It is exactly a real life model as explained in the 

introduction of the chapter.  

In chapters 3 and 4 we identify the inventory model with a special class of queues 

namely ‘retrial queues’. We have considered the real life situations where the customers 

waiting for service in the ‘virtual queue’ undergoing decay. We have analyzed two situations: 

First, the server takes the perished customers from the virtual queue for repair ( some sort of a 

processed service). Second, Server goes for search of perishable customers in the virtual orbit 

there by trying to provide ‘priority’  for such customers. It is worthwhile to note here that the 

investigator successfully used the search mechanism introduced by himself and others [] for the 

effective utilization of a stochastic model. By the introduction of the search mechanism, the idle 

time of the server is significantly reduced and server utilization is optimally increased. 

Moreover, life time of the perishable commodities are optimally considered they have been 

‘picked’ for service before perishing.  

Though, most of the stochastic models are not analytically tractable, the investigator 

effectively used the techniques from computational probability to overcome this barrier. The 

investigator make use of the modern matrix geometric approximation for computing the steady 

state probabilities of the models considered. The presented algorithm for the calculation of the 

stationary state distribution under the given set of parameters of the model could be used for 

the evaluation of any performance measures of the system. Thus, it can be used for solving the 

problems of optimal service and retrial rates selection and search time for perishable 

commodities in the virtual queue. 

We successfully developed a FORTRAN code a retrial queue with service follows Phase 

type (PH) distribution. The importance of Ph distribution is, it is dense in the class of all 

distributions. Thus, it will fit for any practical situation. Using the FORTRAN code developed, 

various performance measures  can be obtained for real life models. 

Two papers [28, 29] have already published as outcomes of the project and two papers 

are communicated. 
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