

CMS COLLEGE KOTTAYAM (AUTONOMOUS)

Affiliated to the Mahatma Gandhi University, Kottayam, Kerala

CURRICULUM FOR UNDERGRADUATE PROGRAMME

BACHELOR OF SCIENCE IN BOTANY

UNDER CHOICE BASED CREDIT SYSTEM 2016 (With effect from 2016)

SEMESTER I

Core course 1 Code: BY1711101 METHODOLOGY OF SCIENCE AND AN INTRODUCTION TO BOTANY (Theory 36 hrs; Practical 36 hrs; Credits 2 + 1)

Objectives:

- Understand the universal nature of science
- Demonstrate the use of scientific method
- To lay a strong foundation to the study in Botany
- Impart an insight into the different types of classifications in the living kingdom.
- Appreciate the world of organisms and its course of evolution and diversity.
- Develop basic skills to study Botany in detail.

Module 1: Introduction to science and the methodology of science (4 hrs)

Scientific method: steps involved - observation and thoughts, formulation of hypothesis; inductive reasoning - testing of hypothesis; deductive reasoning - experimentation - formulation of theories and laws.

Module 2: Experimentation in science (4 hrs)

Selection of a problem - searching the literature – designing of experiments - selection of variables, study area, and a suitable design. Need of control, treatments and replication. Mendel"s experiments as an example of moving from observations to questions, then to hypothesis and finally to experimentation. Ethics in science.

Module 3: Origin and evolution of life (10 hrs)

Origin of life on earth from molecules to life - Oparin, s hypothesis, Haldane, s hypothesis, Miller-Urey experiment, Panspermia, origin of cells and the first organisms. Evolutionary history of Biological diversity – fossil record; geological time scale – major events in each era. Evidences of evolution; theories of evolution - Lamarck, Wallace, Charles Darwin, Hugo De Vries. Neo-Darwinism – major postulates - isolation, mutation, genetic drift, speciation.

Module 4: Diversity of life and its classification (12 hrs)

Diversity of life: two kingdom classification (Carolus Linnaeus, 1735); phylogenetic classification (August W Eichler, 1878); five kingdom classification (R H Whittaker, 1969). Three domains, six kingdom classification, (Carl Woese, 1990) – criteria for classification, general characters of each kingdom. The three domains of life: Archaea, Bacteria, Eucarya – general characters of each.

Diversity of plants: study the salient features of algae, fungi, bryophytes, pteridophytes, gymnosperms and angiosperms.

Module 5: Basic Botanical skills (6 hrs)

Light microscope: dissection and compound microscope – parts and uses. Preparation of specimens for light microscopy - collection and preservation of plant specimens; killing and fixing; killing agents - formalin, ethyl alcohol; fixing agents - Carnoys fluid, Farmer''s fluid, FAA; herbarium (brief study only). Whole mounts and sections – hand sectioning – TS, TLS, RLS. Staining plant tissues: purpose; stains - safranine, acetocarmine, crystal violet. Temporary and permanent mounting, mountants.

PRACTICAL (36 hrs)

1. Design an experiment to verify a given hypothesis.

2. Conduct a survey-based inquiry on a given topic (To test the validity of a given hypothesis. E.g., all angiosperm parasites are Dicot plants).

3. Select an important classical experiment and find out the different elements of the methodology of science (e.g., Robert Koch experiment).

4. Conduct field surveys to identify and collect plant specimens to appreciate the diversity of plant kingdom. Submit five preserved specimens (in bottles and/or herbarium) belonging to diverse groups.

5. Identification of plants with vascular elements, plants which produce flowers, fruits, seeds, cone, sporophyll, embryos and study their salient features.

6. Prepare temporary, stained hand sections (TS, TLS, RLS) of plant specimens appropriate for light microscopic studies.

REFERENCES

1. Carl R Woese, O Kandler, M L Wheelis, 1990. "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proceedings of the National Academy of Sciences of the United States of America, 87 (12): 4576–4579.

2. Kenneth A Mason, Jonathan B Losos, Susan R Siger, 2013. Biology (IX Edn). McGraw Hill.

3. James B Reece, Lisa A Urry, Michael L Cain, Steven A Wasserman, Peter V Minorsky, Robert B Jackson, 2011. Biology (IX Edn). Pearson.

4. Peter H Raven, George B Johnson, Jonathan B Losos, Susan R Siger, 2005. Biology (VII Edn). McGraw Hill.

5. Scott Freeman, 2005. Biological Science. Pearson education international.

6. Teresa Audesirk, Gerald Audesirk, Bruce E Byer, 2005. Biology: Life on earth. Pearson.

7. Sylvia S Mader, 1990. Biology (III Edn). Wm Crown publishers.

8. Paul B Weisz. The Science of Biology. McGraw Hill.

9. James H Otto, Albert Towle. Modern Biology. Holt, Reinhart and Winston Publishers.

10. D J Taylor, N P O Green, G W Stout, 1997. Biological Science (III Edn). Cambridge.

11. William S Beck, Karel F Liem, George Gaylord Simpson, 1991. LIFE: An Introduction to Biology (III Edn). Harper Collins Publishers.

12. Michael G Simpson, Plant Systematics (II Edn). Academic press.

13. Eldon D Enger, Frederick C Ross, David B Bailey, 2005. Concepts in Biology. Tata McGraw Hill.

14. Monroe W Strickberger, 1989. Evolution. Jones and Bartlett Publishers.

15. Prasad M K, Krishna Prasad M, 1986. Outlines of microtechnique. Emkay Publishers, New Delhi.

16. Varantha Pallabhi, Gautham N, 2005. *Biophysics*. Narosa Publishing House, New Delhi.

SEMESTER II

Core course 2

Code: BY1712102

MICROBIOLOGY, MYCOLOGY AND PLANT PATHOLOGY (Theory 36 hrs; Practical 36 hrs; Credits 2 + 1)

Objectives:

- Understand the world of microbes, fungi and lichens
- Appreciate the adaptive strategies of the microbes, fungi and lichens
- To study the economic and pathological importance of microorganisms

MICROBIOLOGY (Theory 9 hrs; Practical 9 hrs)

Module 1: Introduction (1 hr)

Introduction to microbiology, scope of microbiology.

Module 2: Bacteria (4 hrs)

Bacteria: general characters and classification based on staining, morphology and flagellation. Ultra structure of bacteria. Reproduction - binary fission. Genetic recombination in bacteria - conjugation, transformation and transduction. Economic importance of bacteria.

Module 3: Viruses (2 hrs)

General characters of viruses, viriods and prions. Structure of TMV and Bacteriophage (λ). Multiplication of λ phage – lytic and lysogenic cycle.

Module 4: Applied microbiology (2 hrs)

Isolation and culture of bacteria; media used – general purpose and selective media, applications of bacterial culture (brief study only). Role of microbes: in producing antibiotics, vine, vinegar, curd – role in N_2 fixation, as biofertilizers – role in food spoilage (Brief study only).

PRACTICAL (9 hrs)

- 1. Gram staining curd, root nodules.
- 2. Isolation of microbes from soil through serial dilution and streak plate method.
- 3. Demonstrate the culture of bacteria.
- 4. Microbes and type of fermentation vine, vinegar, curd.

MYCOLOGY (Theory 18 hrs; Practical 18 hrs)

Module 5: Introduction, classification and types of fungi (13 hrs)

General characters of fungi. Classification of fungi - Ainsworth (1973). Distinguishing characters of the different classes of fungi with special reference to reproductive structures and life history of the genera mentioned in each group:

Myxomycotina – *Physarum*; Mastigomycotina – *Albugo*; Zygomycotina - *Rhizopus*; Ascomycotina – Hemiascomycetes - *Saccharomyces*; Plectomycetes - *Penicillium*; Pyrenomycetes – *Xylaria*; Discomycetes - *Peziza*; Basidiomycotina – Teliomycetes – *Puccinia*; Hymenomycetes – *Agaricus*; Deuteromycotina – *Fusarium*.

Module 6: Economic importance of fungi (3 hrs)

Useful and harmful effects of fungi - medicinal, industrial, agricultural, food, genetic studies, spoilage, fungal toxins and diseases. Mycorrhiza: ecto- and endomycorrhiza, significance.

Module 7: Lichens (2 hrs)

General characters, types, general internal structure. Economic and ecological significance of lichens.

Structure, reproduction and life cycle of Parmelia.

PRACTICAL (18 hrs)

- 1. Micropreparation and detailed microscopic study of Rhizopus, Albugo, Saccharomyces, Penicillium,
- Xylaria, Peziza, Puccinia, Fusarium and Parmelia.
- 2. Staining and microscopic observation of endomycorrhizal fungus.
- 3. Investigation of fungal succession on cow dung.

PLANT PATHOLOGY (Theory 9 hrs; Practical 9 hrs)

Module 8: Plant disease development (3 hrs)

History of plant pathology. Classification of plant diseases on the basis of causative organism and symptoms. Host parasite interaction - defence mechanisms in host, mechanism of infection, transmission and dissemination of diseases.

Module 9: Common plant diseases (4 hrs)

Study of following diseases with emphasis on symptoms, cause, disease cycle and control: Bunchy top of Banana, Bacterial blight of Paddy, Root wilt of Coconut, Abnormal leaf fall of Rubber, Root knot disease of Pepper, Leaf mosaic disease of Tapioca, Citrus canker.

Module 10: Control of diseases (2 hrs)

Prophylaxis - quarantine measures, seed certification; Therapeutic - physical therapy, chemotherapy; Biological control and its significance. Fungicides - Bordeaux mixture. Tobacco and Neem decoction (Brief study only).

PRACTICAL (9 hrs)

- 1. Identify the diseases mentioned in the syllabus with respect to causative organisms and symptoms
- 2. Submit herbarium preparations of any three of the diseases mentioned.
- 3. Learn the technique of preparing Bordeaux mixture, Tobacco and Neem decoction.

REFERENCES

1. Ahamadjian Vernon, Hale M E (eds), 1973. The Lichens. Academic press, New Delhi.

2. Ainsworth G C, Sparrow K F, Sussman A S (eds), 1973. *The Fungi: an advanced Treatise*, Vol. 4a & 4b, a Taxonomic review with keys. Academic press, New York.

3. Alexopaulos C J, Mims C W C, Blackwell M, 1996. *Introductory Mycology*. John Willy and sons, Inc. New York.

4. Campbell R, 1987. Plant Microbiology. ELBS Edward Arnold, London.

- 5. Gupta V K, Paul T S, 2004. Fungi & Plant diseases. Kalyani publishers, New Delhi
- 6. Hale M E, 1983. The Biology of Lichen (III Edn). Edward Arnold, London.
- 7. Jim Deacon, 2007. Fungal Biology (IV Edn). Blackwell Publishing, Ane Books Pvt. Ltd.

8. Krishnamurthy K V, 2004. *An Advanced Text Book on Biodiversity Principles and practice*. Oxford and IBH Publishing Co. Pvt. Ltd.

9. Kirk P M, Cannon P F, Minter D W, Stalpers J A, 2008. Dictionary of the Fungi (X Edn). Wallingford, UK: CAB International.

10. Mamatha Rao, 2009. Microbes and Non flowering plants - impact and application. Ane Books Pvt. Ltd.

11. Misra A, Agrawal P R, 1978. Lichens. Oxford and IBH, NewDelhi.

12. Nair M C (eds), 1990. *Mushroom Technical Bulletin* 17. Kerala Agricultural University, Mannuthy.

13. Nita Bahl, 2002. Hand book on Mushrooms. Oxford & IBH Publishing C. Pvt.

SEMESTER III

Core course 3 Code: BY1713104 PHYCOLOGY AND BRYOLOGY (Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- To study the evolutionary importance of Algae as progenitors of land plants
- Understand the unique and general features Algae and Bryophytes and familiarize it
- To study the external morphology, internal structure and reproduction of different types of Algae and Bryophytes
- Realize the application of Phycology in different fields

PHYCOLOGY (Theory 36 hrs; Practical 27 hrs)

Module 1: Introduction to Phycology and classification of Algae (9 hrs)

Introduction: general characters, habitat diversity, range of thallus structure and pigments in algae; structure of algal flagella. Different types of life cycle and alternation of generations in algae. Classification: by Fritsch (1945); brief introduction to the modern classification by Lee (2009) [up to divisions].

Module 2: Type study (18 hrs)

Salient features, thallus structure and reproduction of algae in the following groups with special reference to the type(s) mentioned: Cyanophyceae - *Nostoc*; Chlorophyceae - *Volvox, Oedogonium, Cladophora, Chara;* Xanthophyceae - *Vaucheria;* Bacillariophyceae - *Pinnularia*; Phaeophyceae - *Ectocarpus, Sargassum*; Rhodophyceae - *Polysiphonia.*

Module 3: Artificial culture and economic importance of Algae (9 hrs)

Algal culture: isolation, cultivation and preservation of micro- and macro-algae. Economic importance of algae: algae as food, SCP, fodder, green manure, role in N_2 fixation, medicine and biofuels. Commercial products from Algae - carrageenin, agar-agar, alginates and diatomaceous earth. Role of algae in pollution studies: as indicators of pollution and as bioremediation agents. Eutrophication – algal bloom; harmful and toxic algal blooms – neurotoxins and parasitic algae.

PRACTICAL (27 hrs)

1. Conduct a field visit to any one of the ecosystems rich in Algae to experience algal diversity. Submit a report with photographs.

2. Make micropreparations of vegetative and reproductive structures of the types mentioned in the syllabus.

3. Algal Culture: isolation and cultivation of micro- and macro-algae in suitable growth media

(Demonstration only).

4. Familiarizing the technique of algal collection preservation.

BRYOLOGY (Theory 18 hrs; Practical 9 hrs)

Module 4: General introduction and classification of bryophytes (4 hrs)

Introduction, general characters and classification of bryophytes by Rothmaler (1951); a very brief account of systems and classifications by Goffinet *et al* (2008).

Module 5: Type study (12 hrs)

Distribution, morphology, anatomy, reproduction and life cycle of the following types (developmental details are not required): Hepaticopsida - *Riccia, Marchantia*; Anthocerotopsida - *Anthoceros*; Bryopsida - *Funaria*. Evolution of gametophyte and sporophyte among Bryophytes.

Module 6: Economic importance (2 hrs)

Economic importance of Bryophytes – biological, ecological, medicinal and as potting material.

PRACTICAL (9 hrs)

1. Study the habit, anatomy of thallus and reproductive structures of *Riccia*, *Marchantia*, *Anthoceros*, and *Funaria*.

REFERENCES

1. Anand N, 1989. Culturing and cultivation of BGA. Handbook of Blue Green Algae.

2. Fritsch F E, 1935. The structure and reproduction of the algae, Vol. 1 and II. Uni. Press. Cambridge.

- 3. Morris I, 1967. An Introduction to the Algae. Hutchinson and Co. London.
- 4. Robert Edward Lee, 2008. Phycology. Cambridge University Press,
- 5. Singh V, Pandey P C, Jain D K. A text book of botany.
- 6. Vashishta B R. Text Book of Algae. New Delhi.
- 7. Gangulee Das and Dutta. College Botany Vol. I. Central Book Depot. Calcutta.
- 8. Ganguly, Kar A K. College Botany Vol. II. New Central Book Agency, Calcutta.
- 9. Khan M, 1983. Fundamentals of Phycology. Bishen Singh Mahendra Pal Singh, Dehradun.
- 10. Campbell H D, 1940. The Evolution of land plants (Embryophyta). Univ. Press, Stanford.
- 11. Chopra R N, P K Kumar, 1988. Biology of Bryophytes. Wiley Eastern Ltd. New Delhi.
- 12. Parihar N S, 1965. An Introduction to Bryophyta. Central Book Depot, Allhabad.
- 13. Shaw J A, Goffinet B, 2000. Bryophyte Biology. Cambridge UniversityPress.

14. Smith G M, 1938. Crytogramic Botany Vol. II. Bryophytes and pteridophytes. McGraw Hill Book Company, London.

- 15. Sporne K R, 1967. The Morphology of Bryophytes. Hutchinson University Library, London.
- 16. Vasishta B R. Bryophyta. S Chand and Co. New Delhi.

17. Watson E V, 1971. The structure and life of Bryophytes. Hutchinson University Library, London.

18. Bower F O, 1935. Primitive Land Plants. Cambridge, London.

SEMESTER IV

Core course 4

Code: BY1714104

PTERIDOLOGY, GYMNOSPERMS AND PALEOBOTANY (Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- Understand the diversity in habits, habitats and organization of various groups of plants.
- To impart an insight into the modern classifications in lower forms of plants.
- Understand the evolutionary trends in Pteridophytes and Gymnosperms.
- Study the anatomical variations in vascular plants.
- Understand the significance of Paleobotany and its applications.

PTERIDOLOGY (Theory 27 hrs; Practical 27 hrs)

Module 1: General introduction and classification of Pteridophytes (5 hrs)

Introduction, general characters and classification of Pteridophytes up to classes by Smith (1955) and a very brief account of the classification by Christenhusz *et al.*, 2011.

Module 2: Type study (18 hrs)

Study the distribution, morphology, anatomy, reproduction, life cycle and affinities of the following types (Developmental details are not required): Psilophyta - *Psilotum*; Lycophyta - *Lycopodium*, *Selaginella*; Sphenophyta - *Equisetum*; Pterophyta - *Pteris*, *Marsilea*. Stelar evolution in Pteridophytes; Heterospory and seed habit.

Module 3: Economic importance (4 hrs)

Importance of Pteridophytes: medicinal, ornamental, as biofertilizer.

PRACTICAL (27 hrs)

1. Habit, TS of stem, LS of strobilus and sections of special structures of the following types: *Psilotum, Lycopodium, Selaginella, Equisetum, Pteris, Marsilea.*

GYMNOSPERMS (Theory 18 hrs; Practical 9 hrs)

Module 4: General introduction and classification of Gymnosperms (5 hrs)

Introduction, General characters, classification of Gymnosperms by Sporne (1965) and a very brief account of the classification by Christenhusz *et al* (2011).

Module 5: Type study (11 hrs)

Distribution, morphology, anatomy, reproduction, life cycle and affinities of the following types (Developmental details are not required): Cycadopsida – *Cycas*; Coniferopsida – *Pinus*; Gnetopsidae – *Gnetum*. Affinities of Gymnosperms with Pteridophytes and Angiosperms.

Module 6: Economic importance of Gymnosperms (2 hrs)

Uses of Gymnosperms: as food, medicine, in industry and as ornamental plants.

PRACTICAL (9 hrs)

1. Study of the habit, TS of leaf and stem, morphology of reproductive structures of *Cycas*, *Pinus* and *Gnetum*.

PALEOBOTANY (Theory 9 hrs)

Module 6: Fossils (6 hrs)

Introduction to paleobotany and its significance. Fossil formation, types of fossils. Study of fossil Bryophyte - *Naiadita lanceolata;* fossil Pteridophytes – *Rhynia, Calamites;* fossil Gymnosperm – *Williamsonia.* Applied aspects of Paleobotany - exploration of fossil fuels.

Module 7: Paleobotany in India (3 hrs)

Brief study of the fossil deposits in India. Important Indian Paleobotanical Institutes, contributions of Indian Paleobotanists - Birbal Sahni.

REFERENCES

1. Chamberlain C J, 1935. Gymnosperms: Structure and Evolution. Chicago University Press.

2. Coutler J M, C J Chamberlain, 1958. Morphology of Gymnosperms. Central book depot. Allahabd.

- 3. Sporne K R, 1967. The Morphology of Gymnosperms. Hutchinson and Co. Ltd. London.
- 4. Sreevastava H N, 1980. A Text Book of Gymnosperms. S Chand and Co. Ltd., New Delhi.

5. Vasishta P C, 1980. Gymnosperms. S Chand and Co., Ltd., New Delhi.

6. Maarten J M, Christenhusz, James L Reveal, Aljos Farjon, Martin F Gardner, Robert R Mill, Mark

W Chase, 2011. A new classification and linear sequence of extant gymnosperms. *Phytotaxa*, 19: 55 – 70.

8. Campbell H D, 1940. The Evolution of land plants (Embryophyta). Univ. Press, Stanford.

9. Bower F O, 1935. Primitive Land Plants. Cambridge, London.

10. Chandra S, Srivastava M, 2003. Pteridology in New Millennium. Kluwer Academic Publishers.

11. Eames A J, 1979. Morphology of vascular plants, lower group. Wiley International edition, New Delhi.

12. Parihar N S, 1977. Biology and Morphology of Pteridophytes. Central Book Depot, Allhabad.

13. Rashid A, 1976. An Introduction to Pteridopyta. Vikas publ. Co., New Delhi.

14. Ranker T A, Haufler C H (eds), 2008. *Biology and Evolution of Fern sand Lycophytes*. Cambridege University Press.

15. Mehltreter K, Walker L R, Sharpe J M (eds), 2010. Fern Ecology. Cambridge University Press.

16. Smith A R, Pryer K M, Schuttpelz E, Korall P, Schnelder H, Wolf P G, 2006. A Classification for extant Ferns. *Taxon* 53: 705731.

17. Smith A R, Pryer K M, Schuettpelz E, 2008. Fern classification. In: T.A.Ranker and C.H. Haufler (eds.). *Biology and Evolution of Ferns andLycophytes*. Cambridge University press, UK.

18. Smith G M, 1938. Cryptogamic Botany Vol. II, Bryophytes and Pteridophytes. McGraw Hill Book Company, London.

19. Sporne K R,1967. Morphology of Pteridophytes. Hutchi University Library, London.

20. Sreevastava H N. A text book of Pteridophyta. S Chand and Co., New Delhi.

22. Vasishta B R, 1993. Pteridophyta. S Chand and Co., New Delhi.

23. Maarten J M, Christenhusz, Xian-Chun Zhang, Harald Schneider. A linear sequence of extant families and genera of lycophytes and ferns. *Phytotaxa* 19: 7–54 (2011) 15

24. Andrews H N, 1961. Studies in Paleobotany. John Wiley and Sons Inc., NewYork.

25. Arnold C A, 1947. Introduction to Paleobotany. Tata McGraw Hill, New Delhi.

26. Shukla A C, S P Misra, 1975. Essential of Paleobotany. Vikas Publishing House Pvt. Ltd., Delhi.

- 27. Sreevastava H N, 1998. Paleobotany. Pradeep Publishing Company, Jalandhar.
- 28. Sewart W N, 1983. Paleobotany and the Evolution of Plants. Cambridge Uni. Press, London.

29. Taylor T N. Paleobotany: An Introduction to Fossil Plant Biology. Mc Graw Hill, New York.

30. Watson J. An introduction to study of fossil plants. Adams and Charles Black Ltd. London.

SEMESTER V

Core course 5 Code: BY1715105 ANATOMY, REPRODUCTIVE BOTANY AND MICROTECHNIQUE (Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- Imparting an insight into the internal structure and reproduction of the most evolved group of plants, the Angiosperm.
- Understand the individual cells and also tissues simultaneously
- Understand the structural adaptations in plants growing in different environment.
- Understand the morphology and development of reproductive parts.
- Get an insight in to the fruit and seed development.
- Understand the techniques used to preserve and study plant materials.

ANATOMY (Theory: 27 hrs. Practical: 18 hrs)

Module 1: Structure and composition of plant cells (8 hrs)

Cell wall: structure of cell wall; sub-microscopic structure - cellulose, micelle, micro fibril and macro fibril; structure and function of plasmodesmata, simple and bordered pits; different types of cell wall thickening in treachery elements; extra cell wall thickening materials. Growth of cell wall - apposition, intussusception. Non-living inclusions in plant cells: food products, secretory products, excretory (waste) products - nitrogenous and non nitrogenous.

Module 2: Organization of tissues (9 hrs)

Tissues: meristematic tissue – characteristic features, functions and classification. Theories on apical organization - apical cell theory, histogen theory, tunica-corpus theory. Permanent tissues - structure and function of simple and complex tissues. Secretory tissues: external secretory tissue - glands and nectaries; internal secretory tissues - laticifers.

Tissue systems: epidermal tissue system - epidermis, cuticle, trichome; stomata – structure, types; bulliform cells. Ground tissue system - cortex, endodermis, pericycle, pith and pith rays. Vascular tissue system - structure of xylem and phloem, different types of vascular bundles and their arrangement in root and stem. .

Module 3: Plant body structure (6 hrs)

Primary structure of stem, root and leaf (dicot and monocot). Normal secondary growth in dicot stem and root. Periderm: structure and development - phellum, phellogen, phelloderm, bark, and lenticels. Anomalous secondary thickening: *Bignonia* stem, *Boerhaavia* stem and *Dracaena* stem.

Module 4: Wood anatomy (4 hrs)

Basic structure of wood - heart wood, sap wood; hard wood, soft wood; growth rings and dendrochronology; porous and non-porous wood; ring porous and diffuse porous wood, tyloses. Reaction wood: tension wood and compression wood.

PRACTICAL (18 hrs)

- 1. Study of cell types and tissues.
- 2. Non-living inclusions starch grains, cystolith, raphides, aleurone grains.
- 3. Primary structure of stem, root and leaf Dicots and Monocots.
- 4. Dissect and identify the stomatal types anomocytic, anisocytic, paracytic and diacytic.
- 5. Secondary structure of dicot stem and root.
- 6. Anomalous secondary structure of Bignonia stem, Boerhaavia stem, and Dracaena stem.

REPRODUCTIVE BOTANY (Theory 18 hrs; Practical 9 hrs)

Module 5: Introduction (2 hrs)

Introduction to embryology, floral morphology - parts of flower.

Module 6: Microsporangium and male gametophyte (4 hrs)

Microsporangium: structure and development of anther, microsporogenesis, dehiscence of anther, structure of pollen. Male gametophyte development.

Module 7: Megasporangium and female gametophyte (6 hrs)

Megasporangium: types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis – female gametophyte – structure of a typical embryosac, types of embryosacs - monosporic (*Polygonum* type), bisporic (*Allium* type) and tetrasporic (*Peperomia* type).

Module 8: Fertilization (2 hrs)

Mechanism of pollination, agents of pollination, germination of pollen grains; double fertilization.

Module 9: Endosperm and embryo (4 hrs)

Endosperm: types – cellular, nuclear and helobial. Embryogeny, structure of dicot and monocot embryo, seed formation. Polyembryony.

PRACTICAL (9 hrs)

- 1. Dissect and display parts of different types of flowers.
- 2. Identification of C.S. of anther, embryo sac and embryo.
- 3. Identification of various anther types monothecous, dithecous.
- 4. Identify the different types of ovules.

MICROTECHNIQUE (Theory 9 hrs; Practical 9 hrs)

Module 6: Preservation of plant specimens, sectioning and mounting (9 hrs)

Introduction to microtechnique: killing and fixing - purpose. Dehydration - purpose, agents used - ethyl alcohol. Sectioning: hand sections, serial section; Microtome - rotary, sledge (application only). Staining technique: principle of staining; stains - hematoxylin, fast green, acetocarmine; vital stains - neutral red, Evans blue; mordants - purpose with examples. Types of staining - single staining, double staining. Mounting and mounting media – purpose, mounting media - glycerine, DPX, Canada balsam. Use of permanent whole mounts; permanent sections; maceration, smear and squash preparation.

PRACTICAL (9 hrs)

- 1. Familiarize preparation and use of stains, fixatives and mounting media.
- 2. Preparation of smears and squash.
- 3. Demonstration of microtome sectioning.
- 4. Maceration and identification of tracheary elements.
- 5. Preparation of single stained hand sections (Permanent demonstration only).

REFERENCES

1. Bhojwani S S, Bhatnagar S P, 2011. The Embryology of Angiosperms (V Edn). Vikas Publishing House, Delhi.

- 2. Coutler E G, 1969. Plant Anatomy Part1: Cells and Tissues. Edward Arnold, London.
- 3. Dickinson W C, 2000. Integrative Plant Anatomy. Har cort Acdemic Press, USA.
- 4. Easu K, 1977. Anatomy of seed plants (II Edn). Wiley Eastern, New York.
- 5. Fahn A, 1982. Plant Anatomy (III Edn). Pergamon Press, Oxford.
- 6. Johnson D A, 1940. Plant Microtechnique, McGraw Hill Co., New York.
- 7. Johri B M, 1984. Embryology of Angiosperms. Springer-Verlag.

8. Khasim S M, 2002. Botanical Microtechnique: Principles and Practice. Capital Publishing Company, New Delhi.

9. Maheshwari P, 1971. An introduction to the Embryology of Angiosperms. Tata McGraw Hill Publishing Company Ltd., New Delhi.

10. Pandey B P, 2015. Plant Anatomy. S Chand Publ., New Delhi.

- 11. Patki L R, B L Bhalchandra, I H Jeevaji, 1983. An Introduction to microtechnique. S Chand & Co.
- 12. Prasad M K, Krishna Prasad M, 1986. Outlines of microtechnique. Emkay Publishers, New Delhi.
- 13. Raghavan V, 2000. Developmental biology of flowering plants. Springer, Netherlands.
- 14. Shivanna K R, 2003. Pollen Biology and Biotechnology. Oxford and IBH, Delhi.
- 15. Vashista P C, 1984. Plant Anatomy. Pradeep publication, Jalandhar.

Core course 6 Code: BY1716605 RESEARCH METHODOLOGY, BIOPHYSICS AND BIOSTATISTICS Theory: 54 hrs; Practical: 45 hrs; Credits: 3 + 1)

Objectives:

- To equip the students to conduct independent research and prepare research reports.
- To make the students acquaint with different tools and techniques used in research work.
- To equip the students with basic computer skills necessary for conducting research.
- To enable the students to have enough numerical skills necessary to carry out research.

RESEARCH METHODOLOGY (Theory 18 hrs; Practical 18 hrs)

Module 1: Introduction (4 hrs)

Objectives of research. Types of research - pure and applied. Identification of research problem. Review of literature: purpose, literature sources – names of reputed National and International journals in life science (2 international & 3 national); reprint acquisition - INSDOC, INFLIBNET. **Module 2: Process of research (7 hrs)**

Conducting research: define the problem, identify the objective, design the study, collection of data, analysis and interpretation. Preparation of research report: preparation of dissertation - IMRAD system - preliminary pages, introduction and review of literature, materials and methods, results, discussion, conclusion and bibliography.

Module 3: Use of computer in research (7 hrs)

Introduction to MS - WINDOWS and LINUX, application of MS WORD - word Processing, editing tools (cut, copy, paste), formatting tools. MS EXCEL - creating worksheet, data entry, sorting data. Statistical tools (SUM, MEAN, MEDIAN and MODE). Preparation of graphs and diagrams (Bar diagram, pie chart, line chart, histogram). MS-POWERPOINT - presentation based on a biological topic; inserting tables, charts, pictures. Open source and free alternatives to MS Office: Libre Office, Open Office (brief study). Search engines: Google.com; meta search engine – dogpile.com; academic search - Google scholar. Educational sites related to biological science - Scitable, DNAi.

PRACTICAL (18 hrs)

- 1. Prepare outline of a dissertation (IMRAD system).
- 2. Prepare a list of references (not less than 10) on a topic in biological science.
- 3. Review the literature on a given topic.
- 4. Collect information on a topic related to biological science using the internet.

5. Make a report based on the collected information from the internet (using MS-WORD).

- 6. Prepare tables/charts/graphs using EXCEL.
- 7. Prepare a worksheet using a set of data collected and find out the SUM.
- 8. Prepare a PowerPoint presentation based on the report in Experiment 4.

BIOPHYSICS (Theory 18 hrs; Practical 9 hrs)

Module 4: Introduction (2 hrs)

Introduction to biophysics; branches of biophysics - molecular, cellular, membrane and biomedical instrumentation (scope only).

Module 5: Biophysical instrumentation (16 hrs)

Principle, working and applications of the following:

Microscopy: compound microscope, phase-contrast microscope and electron microscope – SEM. Colorimeter, spectrophotometer. Centrifuge: ultracentrifuge. Chromatography: paper, thin layer and column. Electrophoresis, PAGE. pH meter. Haemocytometer.

PRACTICAL (9 hrs)

- 1. Measurement of pH and adjusting pH using pH meter.
- 2. Separation of plant pigments using TLC.
- 3. Determination of the concentration of a sample solution using colorimeter.
- 4. Demonstration of column chromatography.
- 5. Count the number of cells/spores using Haemocytometer.

BIOSTATISTICS (Theory 18 hrs; Practical 18 hrs)

Module 6: Introduction

Introduction, statistical terms and symbols (Brief study only). Sampling: concept of sample, sampling methods - random and non random sampling. Collection and representation of data: diagrammatic and graphic representation - line diagram, bar diagram, pie diagram, histogram, frequency curve. Measures of central tendency: mean, median, mode, (discrete and continuous series). Measures of dispersion: standard deviation. Distribution patterns: normal distribution, binomial distribution. Tests of significance: Chi-squire test - uses, procedure.

PRACTICAL (18 hours)

1. Collect numerical data, tabulate and represent in different types of graphs and diagrams mentioned in the syllabus.

2. Problems related to mean, median, mode, standard deviation and Chi-square test.

REFERENCES

1. Anita Goel. Computer Fundamentals. Dorling Kindersley (India) Pvt. Ltd.

2. Agarwal S K, 2008. Foundation course in Biology. Ane Books Pvt. Ltd., New Delhi.

3. Day R A, 1998. How to Write and Publish a Scientific Paper. University Press Cambridge.

4. Sunder Rao P S S, Richard J, 2012. Introduction to Biostatistics and Research methods. PHI Learning, New Delhi.

5. Bajpai P K. Biological instrumentation and methodology. S Chand & co Ltd.

- 6. Cotteril R, 2002. Biophysics an Introduction. John Wiley and Sons.
- 7. Debajyoti Das. Biophysics and Biophysical Chemistry. Academic publishers, Kolkatta.
- 8. Dwivedi J N, R B Singh, 1990. Essentials of Plant Techniques. Scientific Publishers, Jodhpur.
- 9. Experimental Design for the Life sciences. University press, Oxford.

10. Gini Courter, Annette Marquis. Ms-Office 2007: BPB Publications.

141 GW Stout, D J Taylor, 2008. Biological Sciences. NPO Green, University Press, Cambridge.

12. Holmes D, Moody P, D Dine, 2006. *Research methods for the biosciences*. Oxford University Press.

13. Jeffrey A Lee, 2009. The Scientific Endeavour: Methodology and perspectives of sciences. Pearson.

14. Narayanan P. Essentials of Biophysics. New Age International Publishers.

15. Norman T, J Bailey, 2008. Statistical Methods in Biology. Cambridge.

16. Patrick Blattner, Louie Utrich, Ken Cook, Timothy Dyck. Special Edition Ms Excel 2007: Prentice Hall India Pvt. Ltd.

17. Prasad S, 2003. Elements of Biostatitics. Rastogi Publications, Meerut.

18. Varantha Pallabhi, Gautham N, 2005. Biophysics. Norosa Publishing House New Delhi.

19. Ranjit Kumar, 2014. Research Methodology: A Step-by-Step Guide for Beginners. SAGE Publications India Pvt Ltd, New Delhi.

Core course 7 Code: BY1715107 PLANT PHYSIOLOGY AND BIOCHEMISTRY (Theory 54 hrs; Practical 45 hrs; Credits 3 + 1)

Objectives:

- Acquire basic knowledge needed for proper understanding of plant functioning.
- Familiarize with the basic skills and techniques related to plant physiology.
- Understand the role, structure and importance of the bio molecules associated with plant life.

PLANT PHYSIOLOGY (Theory 36 hrs; Practical 27 hrs)

Module 1: Water relations (6 hrs)

Plant water relations - diffusion, imbibition, osmosis, OP, DPD, TP; water potential - concepts and components (pressure potential, gravity potential, osmotic potential and matric potential). Absorption of water - active and passive, pathway of water movement - apoplastic and symplastic pathway. Ascent of sap - cohesion-tension theory. Transpiration - types, mechanism, theories (Starch-sugar, Proton-K+ ion exchange), significance; antitranspirants. Guttation.

Module 2: Mineral nutrition (3 hrs)

Role of major and minor elements in plant nutrition, deficiency symptoms of essential nutrients; mineral uptake - passive (ion exchange) and active (carrier concept).

Module 3: Photosynthesis (12 hrs)

Photosynthetic pigments, photo excitation - fluorescence, phosphorescence; red drop and Emerson enhancement effect. Photosystems - components and organization; cyclic and non-cyclic photophosphorylation; carbon assimilation pathways - C3, C4 plants - kranz anatomy, CAM. Photorespiration. Factors affecting photosynthesis - Blackmann''s law of limiting factors.

Translocation of solutes: pathway of phloem transport, mechanism - pressure flow, mass flow hypothesis; phloem loading and unloading.

Module 4: Respiration (8 hrs)

Respiration: anaerobic and aerobic; glycolysis, Kreb^{**}s cycle, mitochondrial electron transport system - components, oxidative phosphorylation, ATPase, chemiosmotic hypothesis. RQ - significance.

Factors affecting respiration.

Module 5: Plant growth and development (5 hrs)

Plant hormones: their physiological effect and practical applications - auxins, gibberellins, cytokinins, ABA, and ethylene. Plant movements: tropic movements - geotropism and phototropism; nastic movements - seismonastic and nyctinastic movements. Physiology of flowering - phytochrome, photoperiodism, vernalization.

Module 6: Stress physiology (2 hrs)

Concepts of plant responses to abiotic stresses (water, salt, temperature), biotic stress (pathogens). Allelopathy.

PRACTICAL (27 hrs)

Core Experiments (any four compulsory):

- 1. Determination of osmotic pressure of plant cell sap by plasmolytic/weighing method.
- 2. Compare the stomatal indices of hydrophytes, xerophytes and mesophytes (any two).
- 3. Separation of plant pigments by TLC/Paper chromatography.
- 4. Measurement of photosynthesis by Wilmott"s bubbler/any suitable method.
- 5. Estimation of plant pigments by colorimeter.

Demonstration experiments:

- 1. Papaya petiole osmoscope.
- 2. Demonstration of tissue tension.
- 3. Relation between transpiration and absorption.
- 4. Necessity of chlorophyll, light and CO₂ in phytosynthesis.
- 5. Simple respiroscope.
- 6. Respirometer and measurement of RQ.
- 7. Fermentation.
- 8. Measurement of transpiration rate using Ganong"s potometer/Farmer"s potometer.

BIOCHEMISTRY (Theory 18 hrs; Practical 18 hrs)

Module 4: Water (3 hrs)

Physical and chemical properties of water, acids and bases; pH - definition, significance; measurement of pH – colorimetric, electrometric (brief study only). Buffers: buffer action, uses of buffers.

Module 5: Carbohydrates (3 hrs)

General structure and functions; classification - mono (glucose and fructose), di (maltose and sucrose) and polysaccharides (starch and cellulose).

Module 6: Proteins (4 hrs)

General structure and classification of amino acids - peptide bond; structural levels of proteins - primary, secondary, tertiary and quaternary; functions of proteins.

Module 7: Lipids (2 hrs)

General features and roles of lipids, types of lipids; fatty acids - saturated and unsaturated; fatty acid derivatives - fats and oils; compound lipids (brief study only).

Module 8: Enzymes (6 hrs)

Classification and nomenclature, mechanism of action. Enzyme kinetics, Michaelis-Menten constant (brief study only). Regulation of enzyme action. Factors affecting enzyme action.

PRACTICAL (18 hrs)

1. General test for carbohydrates - Molischs test, Benedicts"s tests, Fehling"s test.

2. Colour test for starch - lodine test.

3. Colour tests for proteins in solution – Xanthoproteic test, Biuret test, Million"s test, Ninhydrin test.

4. Action of various enzymes in plant tissues: peroxidase, dehydrogenase.

5. Quantitative estimation of protein using colorimeter.

REFERENCES

1. Dayananda B, 1999. Experiments in Plant Physiology. Narosa Publishing House, New Delhi.

2. Hopkins W G, Norman P A Huner, 2008. Introduction to plant physiology. John Wiley and sons. New York.

3. Jain J L, Sanjay Jain, Nitin Jain, 2005. Fundamentals of Biochemistry. S Chand, New Delhi.

4. Lehninger A L, 1961. Biochemistry. Lalyan publishers, Ludhiana.

5. Nelson D L, Cox M M, 1993. Principles of Biochemistry. MacMillan Publications.

6. Pandey S N, Sinha B K, 2006. Plant Physiology. Vikas Publishing House Pvt. Ltd.

7. Plummer D T, 1988. An introduction to practical biochemistry. Tata McGraw-Hill publishing Company, New Delhi.

8. Sadasivam S, Manickan A, 1996. Biochemical Methods. New Age International Ltd. New Delhi.

9. Salisbury F B, Ross C W, 1992. Plant Physiology. CBS Publishers and Distributers, Delhi.

10. Srivastava H S, 2005. Plant Physiology. Rastogi publications, Meerut.

11. Verma V, 2007. Textbook of Plant Physiology. Ane Books India, New Delhi.

12. Taiz L, Zeiger E, 2003. Plant Physiolgy (III Edn). Panima publishing Corporation, New Delhi.

Core course 8Code: BY1715108ENVIRONMENTAL SCIENCE AND HUMAN RIGHTS
(Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- Acquaint the student with the significance of Environmental Science.
- Make the students aware about the extent of the total biodiversity and the importance of their conservation.
- Help the student to design novel mechanisms for the sustainable utilization of natural resources.
- Enable the students to understand the structure and function of the ecosystems.
- Enable the students to understand various kinds of pollution in the environment, their impacts on the ecosystem and their control measures
- Make the students aware about various environmental laws in India and the role of various movements in the protection of nature and natural resources.

ENVIRONMENTAL SCIENCE (48 hrs)

Module 1: Introduction to ecology (8 hrs)

Ecology: introduction, definition, scope and relevance; sub-divisions of ecology - autecology, synecology and ecosystem ecology.

Population: population size, density, natality, mortality, age, rate of natural increase, growth form and carrying capacity, population interactions between species - competition, parasitism, predation, commensalism, protocooperation, mutualism, neutralism.

Community: community concept, biotic community, species diversity, species richness, dominance; growth forms and structure, trophic structure, ecotone, edge effect, habitat, ecological niche, microclimate, ecological indicators, keystone species.

Module 2: Ecosystems (10 hrs)

Structure and function of ecosystems, ecosystem components: abiotic - atmosphere, climate, soil, water; biotic - producers, consumers, decomposers. Productivity - primary and secondary - gross and net productivity - homeostasis in the ecosystem. Concept of energy in ecosystems - energy flow, food chain, food web, trophic levels, trophic structure and ecological pyramids - pyramid of numbers, biomass, energy. Nutrient cycles - biogeochemical cycles of C and N₂.

Ecosystem development: ecological succession, process, climax community, hydrosere, xerosere. Adaptations of plants to environment - xerophytes, hydrophytes, epiphytes, halophytes, mangroves. **Module 3: Biodiversity and its conservation (10 hrs)**

Biodiversity: definition, types, examples – endemism - hot spots; hot spots in India - Western Ghats as hot spot. Wetlands and their importance. Biodiversity loss - IUCN threat categories, Red data book; causes and rate of biodiversity loss - extinction, causes of extinction. Conservation: methods - *in-situ*, *ex-situ*. Joint Forest management - people,,s participation in biodiversity conservation: community reserve, eg. Kadalundi-vallikkunnu. Remote sensing and GIS: introduction, principle, application of remote sensing and GIS in environmental studies and biodiversity conservation (brief account). Ecotourism: ecotourism centers in Kerala - Thenmala and Thattekkad WLS.

Module 4: Environmental pollution (10 hrs)

Environmental studies - definition, relation to other sciences, relevance. Environmental pollution - introduction, definition; Air pollution - air pollutants, types, sources, effect of air pollution on plants and humans, control measures; Water pollution – common pollutants, sources, impact, control measures; water quality standards - DO and BOD; eutrophication. Soil Pollution - causes, sources, solid waste, biodegradable, non-biodegradable, management of solid waste, composting, e – waste. Environmental issues - global warming, greenhouse effect, climate change - causes and impact, ozone layer depletion. Carbon sequestration.

Module 5: Conservation of nature (10 hrs)

Global conservation efforts - Rio Earth summit - Agenda 21, Kyoto protocol, COP15 (15th Conference of the parties under the UN framework convention on climate change) and Paris protocol - major contributions. Conservation strategies and efforts in India and Kerala.

Organizations, movements and contributors of environmental studies and conservation: organizations - WWF, Chipko, NEERI; contributors - Salim Ali, Sunder Lal Bahuguna, Madhav Gadgil, Anil Agarwal, Medha Patkar, Vandana Siva (brief account only).

Environmental Legislation and Laws: Environment (protection) Act 1986, Air (protection and control of pollution) act, 1981 Water (protection and control of pollution) Act, 1974, Wildlife (protection) Act, 1972, Forest (conservation) Act, 1980, Biological Diversity Act (2002) [brief account only].

Module 6: Human rights (6 hrs)

Introduction, meaning, concept and development. Three generations of human rights - civil and political rights, economic, social and cultural rights. Human Rights and United Nations: contributions; main human rights related organizations - UNESCO, UNICEF, WHO, ILO; Declarations for women and children, Universal declaration of human rights. Human rights in India: fundamental rights and Indian constitution, rights for children and women, scheduled castes, scheduled tribes, other backward castes and minorities.

Environment and human rights: right to clean environment and public safety; issues of industrial pollution; prevention, rehabilitation and safety aspect of new technologies such as chemical and nuclear technologies, issues of waste disposal, protection of environment. Conservation of natural resources and human rights: reports, case studies and policy formulation. Conservation issues of Western Ghats – Madhav Gadgil committee report, Kasturi Rangan report. Over-exploitation of ground water resources, marine fisheries, sand mining etc.

PRACTICAL (36 hrs)

- 1. Estimation of CO₂, Cl, and alkalinity of water samples (Titrimetry)
- 2. Determination of pH of soil and water.

3. Assessment of diversity, abundance, and frequency of plant species by quadrate method (Grasslands, forests).

- 4. Study of the most probable number (MPN) of Coliform bacteria in water samples.
- 5. EIA studies in degraded areas (Sampling, Line transect, Quadrate).
- 6. Ecological adaptations in xerophytes, hydrophytes, epiphytes, halophytes and mangroves.

REFERENCES

1. Ahmedullah M, Nayar M P, 1987. Endemic plants of the Indian region. Botanical survey of India, Calcutta.

2. A K Bhatacharya, 2005. Ecotourism and Livelihoods. Concept Publishing Co. New Delhi.

3. AmalRaj S. Introduction to environmental science and technology. Laxmi Publications Pvt. Ltd., New Delhi.

4. Asthana D K, Meera Asthana, 2006. A text book of environmental studies. S Chand.

- 5. Basha S C, 1991. Indian forester. 117: 439-448. The distribution of mangroves in Kerala.
- 6. Bharucha, Erach, 2003. The Biodiversity of India. Mapin Publishing Co., New Delhi.
- 7. Ceballos-Lascurian, Hector, 1996. Tourism, Ecotourism and Protected areas. IUCN, Cambridge UK.
- 8. Champion H G, 1986. A preliminary survey of forests of India and Burma. Ind. For. Rec. 1: 1-236.

9. Champion H G, Seth S K, 1968. A revised survey of the forest types of India. Govt. of India press, Delhi.

- 10. Chandrasekharan C, 1962. A General note on the vegetation of Kerala state; Ind. For.88: 440-441.
- 11. Chandrasekharan C, 1962. Ecological Study of the Forests of Kerala State; Ind. For.88: 473-480.
- 12. Chandrasekharan C, 1962. Forest Types of Kerala State. Ind. For. 88: 660-847.

13. Garg M R, Bansal V K, Tiwana N S, 2007. Environmental Pollution and Protection. Deep and Deep Publishers, New Delhi.

- 14. H D Kumar, 2000. Modern Concepts of Ecology. Vikas Publishing House, New Delhi.
- 15. H Kaur. Environmental studies. Pragathi Prakashan, Meerut.
- 16. IUCN, 2000. The IUCN Red list categorie. IUCN. Gland.
- 17. IUCN, 2007. The 2000 IUCN Red list of Threatened Species. IUCN. Gland.
- 18. Jain S K, Sastry A R K, 1984. The Indian plant red data book. Botanical survey of India, Calcutta.
- 19. Khopkar S M, 1995. Environmental Pollution Analysis. New Age International (P) Ltd.

20. Kreg Lindberg, Deonal E Hawkins, 1999. Ecotourism: A guide for planners and managers. Natraj Publishers, Dehradun.

- 21. Kumar D, 2006. Ecology for Humanity Eco Tourism. Intellectual Book Bureau, Bhopal.
- 22. Kumar U, M Asija, 2006. Biodiversity: Principles and conservation. Agrobios India.
- 23. Mani M S, 1974. Ecology and Biogeography in India. W Junk B V Publishers, Netherlands.

24. Misra D D, 2008. Fundamental concepts in Environmental Studies. S. Chand & Co. Ltd., New Delhi.

25. Myers N, 1988. The Environmentalist 8: 187-208.

26. Nayar M P, Giri G S, 1988. Keywords to the Floristics of India. Vol. 1. Botanic Survey of India. Calcutta.

27. Nayar M P, Sastry A R K, 1987, 1988, 1990. Red Data Book of Indian Plants, Vols. I - III. Botanical Survey of India, Calcutta.

28. Nayar M P, 1996. Hot Spots of Endemic Plants of India, Nepal and Bhutan. Tropical Botanic Garden and Research Institute, Trivandrum.

29. Nayar M P, 1997. Biodiversity challenges in Kerala and science of conservation biology. In: P. Pushpangadan, K S S Nair (Eds), Biodiversity of tropical forests the Kerala scenario. STEC, Kerala.

30. Odum E P, 1971. Fundamentals of Ecology. WB Sunders.

31. Oza G M, 1992. The Earth Summit. Ind. For. 5: 338.

32. Panday S N, S P Misra, 2011. Environment and Ecology. Ane Books Pvt.Ltd. New Delhi

33. Ravindranath N H, Sudha P, 2004. Joint Forest Management: Spread performance and Impact. Universities Press.

34. Richard Wright, 2009. Environmental Science towards a Sustainable Future. Pearson Education.

35. Santhra S C, 2004. Environmental Science. New Central Book Agency.

36. Sulekha, Chendel. Plant Ecology and Soil. S Chand & Co. Ltd. New Delhi.

37. Waxena H M, 2006. Environmental Studies. Rawat Publications, New Delhi.

38. Wood, Ronald, 1974. The Geography of the Flowering Plants. Longman Group Ltd., London.

39. Amartya Sen, 2009. The Idea Justice. Penguin Books, New Delhi.

40. Chatrath, K J S (ed.), 1998. Education for human rights and democracy (Shimla: Indian Institute of Advanced Studies)

41. Law Relating to Human Rights, Asia Law House, 2001.

42. Shireesh Pal Singh, Human Rights Education in 21st Century. Discovery Publishing House Pvt. Ltd. New Delhi.

43. S K Khanna, 1998, 2011. Children and the human rights. Commonwealth publishers.

44. Sudhir Kapoor, 2001. Human Rights in 21st Century. Mangal Deep Publications, Jaipur.

45. United Nations Development Programme, Human Development Report 2004. Cultural liberty in today"s diverse world. Oxford University Press, New Delhi.

OPEN COURSES

Open course 1 Code: BY1715401 AGRI-BASED MICROENTERPRISES (Theory 72 hrs; Credits 3)

Objectives:

- Provide basic information about the business opportunities in plant sciences.
- Inform the student about sustainable agriculture and organic farming.
- Inculcate an enthusiasm and awareness about ornamental gardening, nursery management and mushroom cultivation.

Module 1: Organic farming and composting techniques (9 hrs)

Advantages of organic manures and fertilizers. Composition of fertilizers – NPK content of various fertilizers. Common organic manures – bone meal, cow dung, poultry waste, oil cakes, organic mixtures and compost. Preparation of compost - aerobic and anaerobic - advantages of both; vermicompost - preparation, vermiwash. Biofertilizers: definition, types – *Trichoderma, Rhizobium*, PGPR. Biopesticides – Tobacco and Neem decoction. Biological control.

Module 2: Horticulture and Nursery management (18 hrs)

Soil components. Preparation of potting mixture. Common Garden tools and implements. Methods of plant propagation - by seeds - advantages and disadvantages. Vegetative propagation - advantages and disadvantages. Natural methods of vegetative propagation. Artificial methods - cutting, grafting,

budding and layering. Use of growth regulators for rooting. Gardening - types of garden - ornamental, indoor garden, kitchen garden, vegetable garden for marketing.

Module 3: Food spoilage and preservation techniques (9 hrs)

Causes of spoilage. Preservation techniques - asepsis, removal of microorganisms, anaerobic conditions and special methods – by drying, by heat treatment, by low temperature storage and by chemicals (Food Additives). Preparation of wine, vinegar and dairy products.

Module 4: Mushroom cultivation and Spawn production (9 hrs)

Types of mushrooms - button mushroom, oyster mushroom and milky mushroom, poisonous mushroom – methods of identification. Spawn – isolation and preparation. Cultivation milky mushrooms – using paddy straw and saw dust by polybag. Value added products from mushroom – pickles, candies, dried mushrooms.

Module 5: Plant tissue culture and micropropagation (9 hrs)

Concept of totipotency. Micropropagation: different methods – shoot tip, axillary bud and meristem culture; organogenesis, somatic embryogenesis. Infra structure of a tissue culture laboratory. Solid and liquid media - composition and preparation. Sterilization techniques. Explant - inoculation and incubation techniques. Stages of micropropagation – hardening and transplantation. Packaging and transportation of tissue culture regenerated plantlets.

ON HAND TRAINING (18 hrs)

1. Prepare a chart showing the NPK composition of minimum 6 manures and fertilizers.

2. Identification and familiarization of the following organic manures: cow dung (dry), Coconut cake,

Vermicompost, neem cake, organic mixture, bone meal.

- 3. Preparation of potting mixture.
- 4. Make a vermicompost pit /pot in the campus/ house of the student.
- 5. Familiarization of common garden tools and implements.

6. Estimation of germination percentage of seeds

- 7. Demonstrate the effect of a rooting hormone on stem cutting.
- 8. Demonstration of T budding and air layering on live plants.
- 9. Familiarization of garden components from photographs.
- 10. Preparation of vinegar/dairy product (any two) in class or home.

11. Familiarization of different mushrooms and preparation of a polybag of *Pleurotus* using straw/sawdust.

12. Visit to a well established tissue culture lab, nursery and mushroom cultivation unit.

REFERENCES

1. Purohit S S, 2005. Plant Tissue Culture. Student Edition.

2. Rema L P, 2006. Applied Biotechnology. MJP Publishers.

- 3. Adams M R, M O Moss, 1995. Food Microbiology. Panima Publishing.
- 4. Casida L E (Jr.), 2005. Industrial Microbiology. New Age International.
- 5. Chandha.K L, 2003. Handbook of Horticulture. ICAR. New Delhi.
- 6. Frazier, Westhoff, 1988. Food Microbiology. Tata McGraw Hill.
- 7. George Acquciah, 2004. Horticulture: Principles and Practices (II Edn). Prentice Hall. India.
- 8. George J Banwant, 2004. Basic Food Microbiology. CBS Publishers and Distributors.
- 9. Gopal Chandha De, 2002. Fundamentals of Agronomy. Oxford and IBH Publishing House.

10. Hudson T, Hartmann, Dale E Kester, 2001. Plant Propagation, Principles and Practices (VI Edn). Prentice Hall, India.

11. James M Jay, 2005. Modern Food Microbiology. CBS Publishers and Distributors.

12. Kalyan Kumar De, 1996. Plant Tissue Culture. New Central Book Agency (P) Ltd.

13. Kaul T N, 2002. Biology and Conservation of Mushroom. Oxford and IBH Publishing Co.

14. Kunte, Kawthalkar, Yawalker, 1997. Principles of Horticulture and Fruit Growing. Agri – Horticulture Co.

15. Neshamani S, 2003. Pazhangal, Pazhavibhavangal (Malayalam). Kerala Bhasha Institute.

16. Pandey R K, S K Ghosh, 1996. A Hand Book on Mushroom Cultivation. Emkey Publications.

17. Prem Singh Arya, 2004). Vegetable Seed Production Principles. Kalyani Publishers.

18. Prince Alex, Rajani A Nair, 2003. Ayurveda Avshodha Nirmanam – Sidhanthavum Prayogavum (Malayalam). Kerala Bhasha Institute.

19. Razdan M K, 1995. Introduction to Plant Tissue Culture (II Edn). Oxford and IBH Publishing Co.

20. Sharma R R, 2005. Propagation of Horticultural Crops. Kalyani Publishers.

21. Singh B D, 1996. Biotechnology. Kalyani Publishers.

Open course 2 Code: BO5OPT02 HORTICULTURE AND NURSERY MANAGEMENT (Theory 72 hrs; Credits 3)

Objectives:

- Understand the importance of horticulture in human welfare.
- Understand the propagation and cultural practices of useful vegetable, fruit and garden plants.
- Understand the impact of modern technologies in biology on horticultural plants.
- Understand the basic concepts of landscaping and garden designing.
- Inculcate interest in landscaping, gardening and flower and fruit culture.

HORTICULTURE (48 hrs)

Module 1: Introduction (10 hrs)

Introduction to horticulture: definition, history; classification of horticultural plants, disciplines of horticulture. Soil: formation, composition, types, texture, pH and conductivity. Garden tools and implements.

Preparation of nursery bed; manures and fertilizers - farm yard manure, compost, vermicompost, biofertilizers; chemical fertilizers - NPK; time and application of manures and fertilizers, foliar spray. Irrigation methods - surface, sub, drip and spray irrigations - advantages and disadvantages - periodicity of irrigation.

Module 2: Propagation of plants (10 hrs)

Propagation of horticultural plants - by seeds; seed development and viability, seed dormancy, seed health, seed testing and certification. Growing seedlings in indoor containers and field nurseries, seed bed preparation, seedling transplanting; advantages and disadvantages of seed propagation.

Vegetative propagation - organs used in propagation - natural and artificial vegetative propagation; methods - cutting, layering, grafting and budding; advantages and disadvantages of vegetative propagation; micropropagation.

Module 3: Gardening (10 hrs)

Gardening - ornamental gardens, indoor gardens, kitchen gardens- terrestrial and aquatic gardens - garden adornments; garden designing; garden components - lawns, shrubs and trees, borders, hedges, edges, drives, walks, topiary, trophy, rockery; famous gardens of India. Landscape architecture - home landscape design, urban planning, parks, landscaping and public buildings, industrial and

highway landscaping. Physical control of plant growth - training and pruning - selection of plant, bonsai containers and method of bonsai formation.

Module 4: Floriculture (6 hrs)

Introduction, commercial floriculture - jasmine, orchid, anthurium, rose, gladiolus; production of cut flowers, quality maintenance, packing, marketing. Flower arrangements - basic styles - upright and slanting - japanese ikebana, dry flower arrangement.

Module 5: Olericulture (4 hrs)

Olericulture - types of vegetable growing - home gardens and market gardens; cultivation practices of leafy vegetable (Amarathus), tuber (Potato), fruit (Tomato), flower (Cauliflower).

Module 6: Pomology (4 hrs)

Pomology - cultivation of fruit crops - mango, banana and pine apple - preparation of land, spacing, planting, irrigation, hormones, harvest and storage. Factors affecting duration of storage. Principles of preservation - temporary and permanent - agents for fruit preservation. Preparation of pickles, jams, jellies and squashes using locally available fruits.

Module 7: Gardening – additional features (4 hrs)

Garden friends - honey bees, ladybirds, frogs, spiders, earthworms, centipedes and millipedes. Garden foes - pests, pathogenic fungi, bacteria, virus. Control measures - pesticides and fungicides; neem tobacco decoction. Hazards of chemical pesticides; equipments used in controlling horticultural pests - sprayers, dusting equipments - sterilization, fumigation.

Weeds - annual, perennial; weed control - prevention, eradication - hand weeding, tillage, burning, mowing, biological control, use of herbicides - selective and non selective - mechanisms involved in herbicidal actions.

NURSERY MANAGEMENT (6 hrs)

Module 1: Nurseries (6 hrs)

Nursery: definition, types; management strategies - planning, layout, budgeting - production unit, sales unit. Plant growing structures - green houses, fernery, orchidarium, arbetorium.

ON HAND TRAINING (18 hrs)

1. Preparation of potting mixture of known combination and potting in earthern pots/poly bags.

- 2. Preparation of nursery beds.
- 3. Preparation of compost/vermicompost using different substrates.
- 4. Working knowledge and identification of garden tools and implements.
- 5. Practical knowledge in different plant propagation techniques listed in syllabus.
- 6. Cultivation of a vegetable/ornamental plant/fruit crop listed in the syllabus.
- 7. Practice of different pruning operations (top dressing, shaping and topiary) in the following plants:
- (1) Bougainvillea (2) Phyllanthus.
- 8. Visit a well established nursery and submit report.

REFERENCES

- 1. Adams C R, Early M P, 2004. Principles of Horticulture. Elsevier, N. Delhi.
- 2. Barton West R, 1999. Practical Gardening in India. Discovery Pub. House, New Delhi.
- 3. Edmond J B, Senn T L, Andrews F S, Halfacre P G, 1975. *Fundamentals of Horticulture* (IV Edn). TMH, New Delhi.
- 4. John Weathers, 1993. Encyclopaedia of Horticulture. Discovery Pub. House. New Delhi
- 5. Jules Janick, 1979. Horticultural Science. Surject publications, Delhi
- 6. Kumar N, 1994. Introduction to Horticulture. Rajalakshmi Pub. Nagarcoil
- 7. Manibhushan Rao K, 1991. Text Book of Horticulture. Macmillan India Ltd.

8. Randhawa G S, Mukhopadhyay A, 1986. *Floriculture in India*. Allied Publishers Pvt. Ltd. Ahamedabad.

9. Sadhu M K, 1996. Plant Propagation. New age International publishers, N. Delhi

10. Schilletter J C, Richey H W, 1999. Text Book of General Horticulture. Biotech Books, New Delhi

11. Mazundar B C, P M Mukhopadhyay, 2006. *Principles & Practices of Herbal Garden*. Daya Publishing House, Delhi.

12. Vishnu Swarup, 1997. Ornamental Horticulture. MacMillan India Ltd.

13. Linda William, 2005. Ornamental Science Demystified. Tata Mc Graw hill Co.

14. Percy Lancasher, 2004. Gardening in India. Oxford IBH Publishing Co. Pvt. Ltd.

Open course 3 Code: BO5OPT03 ECOTOURISM (Theory 72 hrs; Credits 3)

Objectives:

- Make the students to opt various ecotourism programs in the self employment stream
- Make the students aware of the usefulness of ecotourism in the conservation of natural resources.
- Help the students to assess various ecotourism programs

Module 1: Introduction (4 hrs)

Definition, concept, introduction, history, relevance and scope.

Module 2: Key principles and characteristics of ecotourism (4 hrs)

Nature area focus, interpretation, environmental sustainability practice, contribution to conservation, benefiting local communities, cultural respect, customer satisfaction, responsible marketing.

Module 3: Components of Ecotourism (12 hrs)

Travel, tourism industry, biodiversity, local people, cultural diversity, resources, environmental awareness, interpretation, stake holders, capacity building in ecotourism.

Module 4: Ecotourism terms (10 hrs)

Adventure tourism, certification, commercialization chain, cultural tourism, canopy walkway, conservation enterprises, ecosystem, ecotourism activities, ecotourism product, ecotourism resources, ecotourism services, endemism, ecolabelling, ecotourism "lite", geotourism, greenwashing, stakeholders, sustainable development, sustainable tourism, leakages

Module 5: Ecotourism resources in India and Kerala (14 hrs)

Major ecosystems vegetation types and tourism areas in Kerala. Festivals and events, entertainment, overview, culture, famous destinations, sightseeing, historical monuments, museums, temples, national parks & wildlife sanctuaries, hill stations, waterfalls, rivers, reaches, wildlife watching and bird watching sites, agricultural sites, tribal areas, tribal museums, tribal arts, rural handicrafts, tribal medicines, archeological sites, adventure sports, sacred groves, mountains, etc.

Module 6: Forms of Ecotourism in India and Kerala (8 hrs)

Eco regions, eco places, waterfalls in Kerala and India, eco travel, dos and don't on eco travel, eco trips. Potential of ecotourism in Kerala. Community based ecotourism, ecotourism and NGOs.

Module 7: Ecotourism Planning (16 hrs)

Background, objectives, strategy, design of activities, target groups, opportunities, capacity building, threats, expectations positive and negative impacts, strength and weakness, benefits and beneficiaries,

stakeholders, linkages, economics, ecotourism auditing. Problems with ecotourism. Carrying capacity of ecotourism. ecotourism facilities – Green report card. Ecotourism management – issues.

Module 8: Ecotourism and livelihood security (4 hrs)

Community, biodiversity conservation and development – Eco-development committees.

REFERENCES

1. A K Bhattacharya, 2005. Ecotourism and Livelihoods. Concept Publ. company, New Delhi.

2. Kreg Lindberg, Deonal E. Hawkins, 1999. *Ecotourism*: A guide for planners and managers. Natraj Publishers, Dehradun.

3. Batta A., 2000. Tourism and environment. Indus Publishing Co., New Delhi.

4. Cater E, 1994. Ecotourism in the third world: Probolems and prospects for sustainability. In: E.

Cater and G. Lowman (Ed.) *Ecotourism*: a sustainable option, Wiley, Chichester.

5. Croall J, 1995. Preserve or Destroy: Tourism and Environemnt. Calouste Gulbenkian Foundation, London.

SEMESTER VI

Core course 9 Code: BY1716109 GENETICS, PLANT BREEDING AND HORTICULTURE (Theory 54 hrs; Practical 45 hrs; Credits 3 + 1)

Objectives:

- Imparting an insight into the principles of heredity
- Understand the patterns of inheritance in different organisms
- Understand the inheritance pattern of nuclear and extra nuclear genes
- Understand the methods of crop improvement
- Understand the importance of horticulture in human welfare
- Develop skill in gardening technique among students

GENETICS (Theory 27 hrs; Practical 27 hrs)

Module 1: Origin and development of Genetics (3 hrs)

Genetics as a science: origin - experiments of Mendel with *Pisum sativum*, general terminology used in genetics. Principles of inheritance, Mendelian laws - monohybrid and dihybrid cross, test cross and backcross.

Module 2: Exceptions to Mendelism (10 hrs)

Modification of Mendelian ratios: incomplete dominance - *Mirabilis*; Co-dominance - MN blood group in man; Lethal genes – pigmentation in Snapdragon.

Geneic interaction: epistasis, (a) Dominant - fruit colour in summer squashes (b) Recessive - coat colour in mice; Complementary genes - flower colour in sweet pea. Non-epistasis - comb pattern in Fowls. Multiple alleles – ABO blood groups in man; self sterility in *Nicotiana*.

Module 3: Linkage of genes (3 hrs)

Linkage and crossing over: chromosome theory of linkage; crossing over - types of crossing over, mechanism of crossing over. Linkage map - 2 point cross, interference and coincidence.

Module 4: Determination of sex (6 hrs)

Sex determination: sex chromosomes and autosomes; chromosomal basis of sex determination; XX-XY, XX-XO mechanism; sex determination in higher plants (*Melandrium album*). Sex linked

inheritance: X-linked - Morgan's experiment e.g. eye colour in *Dorsophila*, Haemophilia in man; Y-linked inheritance; sex limited and sex influenced inheritance. Pedigree analysis.

Module 5: Quantitative inheritance (2 hrs)

Quantitative characters: polygenic inheritance, continuous variation - kernel color in wheat, ear size in maize.

Module 6: Extra-chromosomal inheritance (2 hrs)

Extra chromosomal inheritance: chloroplast mutation - variegation in 40"clock plant; mitochondrial mutations in yeast. Maternal effects - shell coiling in snail; infective heredity - kappa particles in *Paramecium*.

Module 7: Population genetics (1 hr)

Concept of population, gene pool, Hardy-Weinberg principle (brief).

PRACTICAL (18 hrs)

1. Students are expected to work out at least two problems each from: monohybrid, dihybrid, backcross and test cross; all types of modified Mendelian ratios mentioned in the syllabus.

PLANT BREEDING (Theory 13 hrs; Practical 9 hrs)

Module 1: Introduction to plant breeding (1 hr)

Introduction and objectives of plant breeding. Plant breeding centers in Kerala, their achievements – CPCRI, CTCRI, RRII.

Module 2: Plant introduction (2 hrs)

Plant introduction: domestication - centers of origin - procedure of plant introduction - quarantine regulations, acclimatization, agencies of plant introduction in India, major achievements.

Module 3: Selection (2 hrs)

Plant Selection: mass, pure-line, clonal.

Module 4: Hybridization (4 hrs)

Hybridization: types, procedure, important achievements. Heterosis in plant breeding, inbreeding depression, genetics of heterosis and inbreeding depression. Handling segregating generation - pedigree method, bulk method, back cross method. Disease resistance breeding.

Module 5: Mutation breeding and polyploidy breeding (2 hrs)

Mutation breeding: methods, applications and important achievements. Polyploidy breeding: methods and applications.

Module 6: Tissue culture as method in plant breeding (2 hrs)

Application of meristem culture, embryo culture and pollen culture in plant breeding. Role of tissue culture in the creation of transgenic plants.

PRACTICAL (9 hrs)

- 1. Emasculation and bagging.
- 2. Demonstration of hybridization in plants.
- 3. Estimation of pollen sterility/viability.

HORTICULTURE (Theory 14 hrs; Practical 18 hrs)

Module 1: Introduction (3 hrs)

Introduction to horticulture - definition, history. Classification of horticultural plants. Disciplines of horticulture - pomiculture, olericulture, floriculture, arboriculture.

Garden implements - budding knife, secateurs, hedge shear, hand cultivator, sprayers, lawn mower, garden rake, spade.

Irrigation methods: surface, sub, drip and spray irrigations; mist chambers - advantages and disadvantages.

Module 2: Plant propagation: (5 hrs)

Seed propagation: seed testing and certification, seed bed preparation, seedling transplanting, hardening of seedling; advantages and disadvantages of seed propagation. Vegetative propagation: natural and artificial; artificial methods - cutting, layering, grafting and budding, micro-propagation; advantages and disadvantages of vegetative propagation.

Module 3: Gardening (6 hrs)

Types of garden: brief study on ornamental garden, indoor garden, kitchen garden, aquatic garden, vertical garden, medicinal garden, terrace garden, terrarium.

Garden designing: garden components - lawns, shrubs and trees, borders, topiary, hedges, edges, walks, drives.

Physical control of plant growth: training and pruning. Bonsai - selection of plant - bonsai containers and method of bonsai formation.

Plant growing structures: green house, orchidarium, conservatory; Potting mixture – components.

PRACTICAL (18 hrs)

1. Approach grafting (demonstration only), budding (T, patch), air layering.

- 2. Identification of different garden tools and their uses.
- 3. List out the garden components in the photograph of the garden given.
- 4. Visit to established horticultural/agricultural/ornamental/kitchen gardens and observe the
- components there.

REFERENCES

1. Adams C R, Bamford K M, Early M P, 2004. *Principles of Horticulture* (V Edn). Elsevier, Linacre House, Jordan Hill, Oxford OX2 8DP, UK.

2. Edmond J B, Senn T L, Andrews F S, Halfacre P G, 1975. *Fundamentals of Horticulture* (IV Edn). TMHN, Delhi.

- 3. Jules Janick, 1979. Horticultural Science. Surject publications, New Delhi.
- 4. Kumar N, 1994. Introduction to Horticulture. Rajalakshmi Pub. Nagarcoil.
- 5. Manibhushan Rao K, 2005. Text Book of Horticulture (II Edn). Macmillan India Ltd.

6. Randhawa G S, Mukhopadhyay A, 1986. *Floriculture in India*. Allied Publishers Pvt. Ltd. Ahmedabad.

- 7. Sadhu M K, 1989. *Plant propagation*. New age international publishers, N. Delhi.
- 8. Schilletter J C, Richey H W, 2005. Text Book of General Horticulture. Biotech Books, New Delhi.
- 9. Shukla R S, Chandel P S, 2004. *Cytogenetics Evolution and Plant breeding*. S. Chand & Co. Ltd. New Delhi.
- 10. Singh B D, 2015. Plant breeding (X Edn). Kalyani publishers, New Delhi.
- 11. West R, 1999. Practical Gardening in India. Discovery Pub. House, New Delhi.
- 12. Sinnot E W, Dunn L C, Dodzhansky T, 1958. Principles of genetics.
- 13. Swanson C P, 1957. Cytology and Genetics. Englewood cliffs, NewYork.

14. Raven P H, Johnson G B, Losos J B, Singer S R, 2005. *Biology* (VII Edn). Tata McGraw-Hill, New Delhi.

15. William Hexter, Henry T Yost Jr., 1977. The science of Genetics.

16. Laura Livingston Mays, 1981. Genetics: A Molecular approach. Macmillan publishing company.

17. Benjamin A P, 2005. *Genetics: a conceptual approach* (II Edn). W H Freeman and Company, New York.

18. Snustad D P, Simmons M J, 2012. Principles of genetics (VI Edn). John Willey and sons, USA.

Core course 10 Code: BY1716110 CELL AND MOLECULAR BIOLOGY (Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- Understand the ultra structure and functioning of cell in the sub-microscopic and molecular level.
- Get an idea of origin, concept of continuity and complexity of life activities.
- Familiarization of life processes.
- Understand the basic and scientific aspect of diversity.
- Understand the cytological aspects of growth and development.
- Understand DNA as the basis of heredity and variation.

CELL BIOLOGY (Theory 27 hrs; Practical 27 hrs)

Module1: Ultra structure of cell components (8 hrs)

Cell biology through ages: a brief history of cell biology. Cytosol - chemical composition.

Composition, structure and function of plasma membrane - fluid mosaic model.

The ultra-structure of a plant cell with structure and function of the following organelles: Endoplasmic reticulum, chloroplasts, Mitochondria, Ribosomes, Dictyosomes, Microbodies peroxisomes and glyoxisomes, lysosomes and vacuole. Cytoskeleton - microtubules and microfilaments.

Ultra structure of nucleus: nuclear envelope - detailed structure of pore complex, nucleoplasm - composition, nucleolus.

Module 2: Chromosomes (6 hrs)

Chromosomes: introduction, chromosome number, autosomes and allosomes, morphology - metacentric, submetacentric, acrocentric and telocentric. Structure - chromatid, chromonema, chromomere, centromere and kinetochore, telomere, secondary constriction and nucleolar organizer. Chromatin fibres: heterochromatin and euchromatin. Karyotype and ideogram.

Chemical composition of chromatin: histones and non-histones, arrangement of proteins and DNA in chromatin - the 10 nm fibre (nucleosome model), 30 nm fibre (solenoid model) and central axis with radial loops of 300 nm fibre.

Special type of chromosomes: giant chromosomes (salivary gland chromosomes, Lamp brush chromosomes), supernumerary chromosomes (B chromosome).

Module 3: Cell division (6 hrs)

Cell cycle - definition, different stages – interphase (G1, S and G2) and division phase. Mitosis: karyokinesis and cytokinesis, significance of mitosis. Meiosis: stages - first meiotic division (reduction division) and second meiotic (equational division), structure and function of synaptonemal complex, significance of meiosis; comparison of mitosis and meiosis.

Module 4: Chromosomal aberrations (4 hrs)

Numerical: heteroploidy; euploidy – haploidy; polyploidy – autopolyploidy, allopolyploidy (*Raphanobrassica*); aneuploidy - monosomy, trisomy (Fruit morphology in Datura), nullisomy (*Triticum*). Numerical chromosomal abnormalities in man: Down, s syndrome, Klinefelter, s syndrome, Turner, s syndrome.

Structural: deletion (Cri-du-chat syndrome), duplication (Bar eye in Drosophila), inversions (paracentric and pericentric) and Translocations (Robertsonian translocation).

Module 5: Mutation (3 hrs)

Mutation: definition, importance. Types of mutations: somatic and germinal; spontaneous and

induced; chromosomal and gene or point mutations. Molecular basis of mutation: frame shift, transition, transversion and substitution. Mechanism of mutation induction: base replacement, base alteration, base damage, errors in DNA replication. Mutagens: physical - non-ionizing and ionizing radiations; chemical - base analogs, alkylating agents, deaminating agents.

PRACTICAL (27 hrs)

1. Make acetocarmine squash preparation of onion root tip to identify mitotic stages.

2. Study the mitotic index of onion root tip cells (Demonstration only).

3. Study of the different stages of meiosis and identification of different substages of prophase I using photomicrographs or pictures.

4. Identify and study the chromosomal anomalies, patterns and karyotype in man such as Down"s syndrome, Turner"s syndrome and Klinefelter"s syndrome.

MOLECULAR BIOLOGY (Theory 27 hrs; Practical 9 hrs)

Module 6: The genetic material (8 hrs)

Molecular biology: a brief historical prelude. Identification of DNA as genetic material: direct evidences – transformation experiment by Avery *et al.*; Hershey and Chase Experiment. Evidences for RNA as genetic material in some viruses.

Nucleic acids: DNA and RNA, important features of Watson and Crick model of DNA; Chargaff's rule. Alternate forms of DNA - comparison of A, B and Z forms. Structure and function of different types of RNA - tRNA, mRNA, rRNA, snRNA, miRNA.

Module 7: Replication of DNA (4 hrs)

Semiconservative replication of DNA - Messlson and Stahl"s experiment; process of semiconservative replication with reference to the enzymes involved in each step.

Module 8: Gene expression (8 hrs)

Gene expression: concept of gene, split genes, one gene one enzyme hypothesis, one gene one polypeptide hypothesis, the central dogma, reverse transcription. Details of transcription in prokaryotes and eukaryotes; hnRNA, splicing, release of mRNA. Translation - initiation, elongation and termination. Genetic code and its features, wobble hypothesis.

Module 9: Regulation of gene expression (5 hrs)

Regulation of gene expression in prokaryotes: operon concept, indicible and repressible systems, negative control and positive control. Lac operon, catabolic repression. Tryptophan operon, attenuation. Regulation in eucaryotes (brief account only).

Module 10: Genetics of cancer (2 hrs)

Genetic basis of cancer – brief description of proto-oncogenes and oncogenes, tumour suppressor genes; characteristics of cancer cells.

PRACTICAL (9 hrs)

6. Work out elementary problems based on DNA structure, replication, transcription and translation and genetic code.

REFERENCES

1. Aggarwal S K, 2009. Foundation Course in Biology (II Edn). Ane Books Pvt. Ltd.

- 2. Avinash, Kakoli Upadhyay, 2005. Basic Molecular Biology. Himalaya Publishing House, Mumbai.
- 3. Cohn N S, 1964. Elements of Cytology. Brace and World Inc., New Delhi.
- 4. Darlington C D, 1965. Cytology. Churchill, London.

5. Darnel J, Lodish, Hand Baltimore D, 1991. Cell and molecular biology. Lea and Fibiger, Washington.

- 6. De Robertis E D P, Robertis E M P, 1991. Cell and molecular biology. Scientific American books.
- 7. Dobzhansky B, 1961. Genetics and origin of species. Columbia University Press, New York.
- 8. Gardner E J, Snustad D P, 1984. Principles of Genetics. John wiley, NewYork.
- 9. Gerald Karp, 2006. Cell Biology. McGraw Hill company.
- 10. Gupta P K. Genetics. Rastogi Publications.
- 11. Lewin B, 1999. Genes. Oxford University Press, NewYork.
- 12. Lewis W H, 1980. Polyploidy. Plenum Press, NewYork.
- 13. Roy S C, Kalayan Kumar De, 1997. Cell biology. New central Boos, Calcutta.
- 14. Sandhya Mitra, 1998. Elements of Molecular biology. Macmillan, India Ltd.

15. Sharma A K, Sharma A, 1980. Chromosome technique: Theory and practice. Aditya Books, NewYork.

- 16. Veer Bala Rastogi, 2008. Fundamentals of Molecular Biology. Ane Books Pvt. Ltd.
- 17. Wayne M Becker, Lewis J Kleinsmith, Jeff Hardin, 2004. The World of Cell. Pearson Education.
- 18. Waseem Ahammede (faridi), 2013. Genetics and Genomics. Pearson.

Core course 11 Code: BY1716111 ANGIOSPERM MORPHOLOGY, TAXONOMY AND ECONOMIC BOTANY (Theory 72 hrs; Practical 45 hrs; Credits 3 + 1)

Objectives:

- Acquaint with the aims, objectives and significance of taxonomy.
- Identify the common species of plants growing in Kerala and their systematic position.
- Develop inductive and deductive reasoning ability.
- Acquaint with the basic technique in the preparation of herbarium.
- Familiarizing with the plants having immense economic importance.

ANGIOSPERM MORPHOLOGY

Module 1: Leaf, Inflorescence and Fruit morphology (13 hrs)

Leaf Morphology: types, venation, phyllotaxy. Morphology of flower: flower as modified shoot; detailed structure of flowers - floral parts - their arrangement, relative position - symmetry, aestivation and placentation types - cohesion and adhesion. Floral diagram and floral formula. Inflorescence: racemose types - simple raceme, corymb, umbel, spike, spadix, head and catkin; cymose types - simple cyme; monochasial - scorpoid and helicoid, dichasial and polychasial; special type - cyathium, hypanthodium, verticillaster, thyrsus and panicle. Fruits: simple - fleshy, dry - dehiscent, schizocarpic, indehiscent, aggregate, multiple (sorosis and syconus).

TAXONOMY

Module 2: Principles of Plant systematics (12 hrs)

Aim, scope, significance and components of taxonomy. Types of classification - artificial (brief account), natural – Bentham and Hooker (Detailed account) and Phylogenetic (Brief account). Angiosperm phylogeny group system (introduction only). Plant nomenclature - binomial, ICBN/ICN principles - rule of priority and author citation. Interdiciplinary approach in taxonomy -

Cytotaxonomy and Chemotaxonomy. Herbarium technique – importance of herbarium; preparation of herbarium and their preservation. Important herbaria in India, BSI.

Module 3: Detailed study of families (30 hrs)

Study the following families of Bentham and Hooker, System with special reference to their vegetative and floral characters; special attention should be given to common and economically important plants within the families: Annonaceae, Nymphaeaceae, Malvaceae, Rutaceae, Anacardiaceae, Leguminosae (Mimosaceae, Caesalpiniaceae and Fabaceae), Combretaceae, Myrtaceae, Cucurbitaceae, Umbelliferae (Apiaceae), Rubiaceae, Compositae (Asteraceae), Sapotaceae, Apocynaceae, Asclepiadaceae, Solanaceae, Convolvulaceae, Scrophulariaceae, Acanthaceae, Verbenaceae, Labiatae (Lamiaceae), Amaranthaceae, Euphorbiaceae, Orchidaceae, Palmae (Arecaceae), Graminae (Poaceae).

ECONOMIC BOTANY AND ETHNOBOTANY (Theory 9 hrs; Practical 9 hrs) Module 4: Economic botany (12 hrs)

Study the following groups of plants with special reference to the botanical name, family and morphology of the useful part and uses: Cereals - Rice, Wheat; Millets Ragi; Pulses - Green gram, Bengal gram, Black gram; Sugar yielding plants – Sugarcane; Fruits - Apple, Pineapple, Orange, Mango and Banana; Vegetables - Bittergourd, Ladies finger, Carrot and Cabbage; Tuber crops - Tapioca; Beverages - Tea, Coffee; Oil yielding plants - Ground nut, Coconut, Gingelly; Spices – Cardamom, Pepper, Cloves, Ginger; Timber yielding plants - Teak wood and Rose wood; Fibre yielding plants - Coir, Jute, Cotton; Rubber yielding plants - Para rubber; Gums and Resins - White damer, Gum Arabic, Asafoetida; Insecticide yielding Plants - Tobacco and Neem.

Module 5: Ethnobotany (5 hrs)

Introduction, scope and significance of ethnobotany. Study of the following plants used in daily life by tribals and village folks for food, shelter and medicine: Food - *Artocarpus heterophylla*, *Corypha*; Shelter - *Bambusa*, *Ochlandra* and *Calamus*; Medicine – *Curcuma longa*, *Trichopus zeylanicus* and *Alpinia galanga*.

PRACTICAL (45 hrs)

1. Identify the following inflorescence and fruits with reference to their morphological specialities: (a) Inflorescence - simple raceme, spike, corymb, head, simple cyme, cyathium and hypanthodium. (b) Fruits - simple - (fleshy) - berry drupe, pepo, hespiridium. Dry indehiscent - nut. Dry dehiscent - legume, capsule (loculicidal). Aggregate.

2. Preparation of floral formula and floral diagram from floral description (of families studied).

3. Identify the families mentioned in the syllabus by noting their vegetative and floral characters.

4. Students must describe the floral parts, draw the L.S., floral diagram and write the floral formula of at least one flower from each family.

5. Prepare herbarium of 25 plants with field notes.

6. Conduct field work for a period of not less than 5 days under the guidance of a teacher and submit field report.

7. Study the finished products of plants mentioned in the syllabus of economic botany with special reference to the morphology of the useful part, botanical name and family.

8. Identify and describe the ethnobotanical uses of the items mentioned in the syllabus.

REFERENCES

1. Ashok Bendra and Ashok Kumar, 1980. Economic botany, Rastogi publications, Meerut.

2. Cornquist A, 1968. The evolution and Classification of Flowering Plants.

3. Davis P H and Heywood V H, 1967. Principles of Angiosperm Taxonomy. Oliver and Boyl, Edinburgh.

4. Eames A J, 1961. Morphology of Angiosperms. Mc Graw Hill, New York.

5. Foaster A S, Giffad E M, 1962. Comparative morphology of vascular plants. Allied Pacific Pvt. Ltd. Bombay.

6. Henry and Chandra Bose, 2001. An aid to the International Code of Botanical Nomenclature. Botanical Survey of India, Coimbatore.

7. Heywood V H, 1967. Plant Taxonomy. Edward Arnold, London.

8. Hill A F, 1982. Economic Botany. Mc Graw Hill, New York.

9. Jain S K, 1981. Glimpses of Indian Ethnobotany. Oxford and IBH, New Delhi.

10. Jain S K, 1987. A Manual of Ethnobotany. Scientific Publishers, Jodhpur.

11. Jain S K, Rao R R, 1976. A hand book of field and herbarium technique. Today and tomorrow,,s Publishers, New Delhi.

12. Jeffery C, 1968. An Introduction to Plant Taxonomy. J and A Churchill, London.

13. Lawrence G H M, 1951. Taxonomy of Vascular Plants. Macmillan, New York.

14. Maheshwari P and Umaro Singh, 1965. Dictionary of Economic Plants in India. ICAR, New Delhi.

15. Naik V N, 1984. Taxonomy of angiosperms. Tata Mc Graw- Hill Publishing Company, New Delhi.

16. Pandey S N, Misra S P, 2008. Taxonomy of Angiosperms. Ane Books India, New Delhi.

17. Rendle A B, 1979. Classification of flowering plants, Vols. I & II. Vikas Publishing House, U.P.

18. Sambamurthy A, 2005. Taxonomy of Angiosperms. i.K. International Pvt. Ltd, New Delhi.

19. Sharma O P, 1996. Plant Taxonomy. Tata McGraw Hill, New Delhi.

20. Sreemali J L, 1979. Economic Botany. Kitab Mahal, Allahabad.

21. Singh V and Jain D K, 1989. Taxonomy of Angiosperms. Rastogi Publication, Meerut.

22. Swain T, 1963. Chemical Plant Taxonomy. Academic Press, New York.

23. Sivarajan V V, 1991. Introduction to the Principles of Plant taxonomy. Oxford IBH Publishing Co. Pvt. Ltd., New Delhi.

Core course 12Code: BY1716112BIOTECHNOLOGY AND BIOINFORMATICS
(Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- Understand the current developments in the field Biotechnology and Bioinformatics.
- Equip the students to carry out plant tissue culture.
- Introduce the vast repositories of biological data knowledge.
- Equip to access and analyze the data available in the databases.

BIOTECHNOLOGY (36 hrs)

Module 1: Plant tissue culture (6 hrs)

Biotechnology - an overview; plant tissue culture - basic concepts, totipotency, differentiation, dedifferentiation and re-differentiation. Tissue culture media: components, role of plant growth regulators in tissue culture. Preparation of MS medium; sterilization of equipments, glassware and culture medium, surface sterilization of explants.

Module 2: Applications of plant tissue culture (10 hrs)

Micropropagation, methods - axillary bud proliferation, adventitious regeneration – shoot organogenesis and somatic embryogenesis - direct and indirect; meristem culture. Stages of micropropagation, hardening and transplantation. Advantages and disadvantages of micropropagation - somaclonal variations. Embryo culture, callus and cell suspension culture, *in vitro* production of haploids - anther and pollen culture; uses of haploids. Protoplast culture: isolation of protoplast, culture methods, applications; protoplast fusion - cybrids. Artificial seeds, advantages and disadvantages. *In vitro* production of secondary metabolites; cell immobilization, bioreactors (brief study only).

Module 3: Recombinant DNA technology and its applications (10 hrs)

Steps in rDNA technology, cloning vectors and their desirable properties; plasmids, cosmids, phage vectors, Phasmids, YAC and BAC; structure and applications of pBR322, M13 and Ti plasmid. Cutting and joining of DNA molecules - Restriction endonucleases and ligases - ligation techniques. Transformation and selection of transformants - using antibiotic resistances markers and complementation.

Achievements of recombinant DNA technology: in medicine (Human insulin and gene therapy); in agriculture – Bt cotton; in environmental cleaning - super bugs.

Module 4: Techniques in rDNA technology (10 hrs)

DNA isolation, agarose gel electrophoresis, southern hybridization, autoradiography. DNA finger printing and its applications. PCR and its applications. DNA sequencing by Sanger's dideoxy method. Uses of refrigerated centrifuges, UV trans-illuminator, gel documentation system and Laminar Air Flow chamber (brief account only).

GENOMICS AND BIOINFORMATICS (18 hrs)

Module 4: Genomics (4 hrs)

A brief account on genomics and proteomics; major findings of the following genome projects -E. *coli*, Human, *Arabidopsis thaliana*.

Module 5: Basic bioinformatics (7 hrs)

An introduction to bioinformatics, objectives and applications of bioinformatics. Biological data bases: types - primary, secondary and composite databases; nucleotide sequence databases – NCBI (GenBank), EMBL, DDBJ; Protein Sequence databases - SWISS-PROT, PIR; Protein structure database – PDB; bibliographic database – PubMed.

Module 6: Sequence analysis and molecular phylogeny (7 hrs)

Sequence analysis tools - BLAST and FASTA, Molecular visualisation tool - RASMOL (basic commands), Sequence alignment - Scoring matrices, global and local alignment, Pairwise and multiple sequence alignment; common software used in alignment - CLUSTAL W & CLUSTAL X. Molecular phylogeny - homologs, orthologs and paralogs; phylogenetic tree - rooted and unrooted tree, advantages of phylogenetic tree, use of PHYLIP software.

PRACTICAL (36 hrs)

1. Preparation of nutrient medium – Murashige and Skoog medium (Demonstration only).

- 2. Sterilization and inoculation of plant tissue in culture media.
- 3. Establishing shoot tip, axillary bud cultures (Demonstration only).
- 4. Immobilization of whole cells or tissues in sodium alginate.
- 5. Isolation of DNA from plant tissue.
- 6. Agarose gel elecotrophoresis of the isolated DNA (Demonstration only).

7. Familiarise the instruments included in the syllabus such as Autoclave, laminar air flow chamber, UV- trans-illuminator, PCR machine, Electrophoresis apparatus, centrifuge etc. and prepare short notes with diagrammatic sketch or photographs.

8. Familiarizing GENBANK, DDBJ, ENA, SWISS-PROT and PDB databases (Demonstration only).

9. Analysis of structural features of proteins using RASMOL.

10. Local alignment of sequences using BLAST (Demonstration only).

11. Retrieving a few research papers related to genetic engineering from PubMed (Demonstration only).

REFERENCES

1. R Keshavachandran and K V Peter. Plant Biotechnology: Methods in Tissue Culture and Gene Transfer. Orient Blackswan.

2. G Smita Rastogi and Neelam Pathak. Genetic Engineering. Oxford Higher Education.

3. Jean-Michel Claverie, Cedric Notredame. Bioinformatics: A beginner,,s Guide. Wiley India.

4. David W Mount. Bioinformatics: sequence and genome analysis. CBS Publishers.

5. Cynthia Gibas and Per Jambeck. Developing Bioinformatics and Computer Skills. O,,Reilly.

6. T A Brown, 2002. Genomes. Wiley-Liss.

6. C R Cantor, C L Smith. Genomics: The Science and Technology behind the Human Genome Project. John Wiley and Sons.

7. Orpita Bosu, Simminder Kaurthukral. Bioinformatics, databases: tools and algorithms.

8. S Ignasimuthu, 2009. Basic Bioinformatics. Narosa Publications.

9. K Vijayakumar, V S Sugunan, S S Vinod Chandra, K Shiny Sreedhar. Informatics, Bioinformatics. Academica, Thiruvananthapuram.

PROGRAMME ELECTIVE COURSES

Programme elective course 1 Code: BY1716301 AGRIBUSINESS (Theory 54 hours; Credit 3)

Objectives:

- Inculcate and impart an idea about the business opportunities in the field of plant sciences.
- Develop an entrepreneurial mindset and also to stick on to the core subject among the Botany students.
- Give an idea about the need of sustainable development and organic farming.
- Harness the opportunities and potentials in the field of ecotourism, processing technology and food sciences.

Module 1: Entrepreneurship (2 hrs)

Basic qualities of an Entrepreneur. Financial assistance from Banks, role of Institutions like MSME Training Institute, Khadi and village industries board, self help groups, Co-operative sector, Kudumbasree projects and microenterprises.

Module 2: Value added food products (8 hrs)

Preparation and preservation techniques, causes of spoilage of food. Principles of preservation - asepsis, removal of microorganisms, anaerobic situation and special methods - drying, thermal processing - pasteurization, sterilization and canning - low temperature, use of chemical preservatives

and food additives. Preparation of wine, vinegar, pickles, jam, jelly, syrups, sauce, dry fruits, dairy products - cheese, butter, yoghurt, paneer.

Module 3: Processing techniques (8 hrs)

Processing of latex: centrifuged latex products and galvanized rubber products. Processing, storage and marketing of Cocoa, Coconut (Copra ,Coir and Tender coconut), Rice (par boiled, raw rice and rice flour), Pepper, Cardamom, Ginger, Arrowroot, Tapioca, Cashew, Mango, Jack fruit, Guava, Grapes, Lemon, Papaya, Musa, Garcinia.

Module 4: Nursery management (6 hrs)

Preparation of potting mixtures, polybags. Plant growing structures - green houses, shaded houses, polyshed, mist chamber, sprinkling system, drip irrigation. Modern strategies in propagation by root initiation of cutting, layering technique, budding and grafting technique; micropropagation. Planting, transplanting and hardening of seedlings, after care of seedlings. Packing and transport of seedlings.

Module 5: Organic farming and composting techniques (6 hrs)

Organic manures and fertilizers, composition of fertilizers. NPK content of various fertilizers and preparation of fertilizer mixtures. Common organic manures - bone meal, cow dung, poultry waste, oil cakes, organic mixtures and compost. Preparation of compost - aerobic and anaerobic - advantages and limitations. Vermicompost - preparation; Vermiwash - preparation. Biofertilizers - definition and preparation of different types - Trichoderma, Rhizobium, PGPR, PSB, mycorrhiza. Application of biofertilizers. Biopesticides, Tobacco and Neem decoction. Biological control of disease and pests.

Module 6: Cultivation of vegetables, fruits and medicinal plants (6 hrs)

Types - home gardening, market gardening and truck gardening. Packing and transporting of vegetables. Organic farming of fruit crops - packing and transporting of fruits. Induction of flowering and weed control. Cultivation of medicinal and aromatic plants of common use and great demand.

Module 7: Floriculture and Apiculture (6 hrs)

Floriculture: problems and prospects of floriculture in Kerala. Scope of growing Anthurium, Orchids and Jasmine in Kerala. Common cut flowers - Rose, Gerbera, Gladiolus, Aster, *Chrysanthemum*, Anthurium and Orchids. Common leaves used in flower arrangement - *Cyprus, Podocarpus, Asparagus*, Palms, Cycads and Ferns.

Apiculture: scope and significance. Structure, installation and maintenance of an Apiarium. Extraction, processing, preservation and marketing of honey.

Module 8: Flower arrangement (4 hrs)

Types - Western, Eastern (Japanese/ Ikebana) and modern. Wases, flower holders and floral foam. Wase life of flowers and leaves. After care of flower arrangements – Bouquets. Packing and maintenance of flowers and leaves.

Module 9: Ornamental garden designing (4 hrs)

Garden components. Lawn preparation by seeds, seedling and turfing. Maintenance of garden by Irrigation, Pruning, Repotting. Disease and Pest control.

Module 10: Mushroom cultivation and farming (4 hrs)

Mushrooms: significance, nutritive value. Types of Mushrooms – Button – *Pleurotus, Volvorella*. Spawn production, storage and marketing. Growth of Mushrooms on paddy straw and saw dust by poly bag. Mushroom growing structures and maintenance of humidity. Pests and defects of mushrooms. Storage, transporting and marketing of mushrooms.

REFERENCES

1. Adams M R, M O Moss, 1995. Food Microbiology. Panima Publishing.

- 2. Casida L E (Jr.), 2005. Industrial Microbiology. New Age International.
- 3. Chandha K L, 2003. Handbook of Horticulture. ICAR. New Delhi.
- 4. Frazier, Westhoff, 1988. Food Microbiology. Tata McGraw Hill.

5. George Acquciah, 2004. Horticulture: Principles and Practices (II Edn). Prentice Hall. India.

- 6. George J Banwant, 2004. Basic Food Microbiology. CBS Publishers and Distributors.
- 7. Gopal Chandha De, 2002. Fundamentals of Agronomy. Oxford and IBH Publishing House.

8. Hudson T, Hartmann, Dale E Kester, 2001. Plant Propagation: Principles and Practices (VI Edn). Prentice Hall. India.

9. James M. Jay, 2005. Modern Food Microbiology. CBS Publishers and Distributors.

10. Kalian Kumar De, 1996. Plant Tissue Culture. New Central Book Agency (P) Ltd.

11. Kaul T N, 2002. Biology and Conservation of Mushroom, Oxford and IBH Publishing Co.

12. Kunte, Kawthalkar, Yawalker, 1997. Principles of Horticulture and Fruit Growing. Agri-Horticulture Co.

13. Neshamani S, 2000. Pazhangal, Pazhavibhavangal (Malayalam). Kerala Bhasha Institute.

14. Pandey R.K, S K Ghosh, 1996. A Hand Book on Mushroom Cultivation. Emkey Publications.

15. Prem Singh Arya, 2004. Vegetable Seed Production Principles. Kalyani Publishers.

16. Prince Alex, Rajani A Nair, 2003. Ayurveda Avshodha Nirmanam – Sidhanthavum Prayogavum Malayalam. Kerala Bhasha Institute.

17. Purohit S S, 2005. Plant Tissue Culture. Student Edition.

- 18. Razdan M K, 1995. Introduction to Plant Tissue Culture (II Edn). Oxford and IBH Publishing Co.
- 19. Rema L P, 2006. Applied Biotechnology. MJP Publishers.
- 20. Sharma R R, 2005. Propagation of Horticultural Crops. Kalyani Publishers.
- 21. Singh B D, 1996. Biotechnology. Kalyani Publishers.

Programme elective course 2 Code: BO6PET02 PLANT GENETIC RESOURCES MANAGEMENT (Theory 54 hours; Credit 3)

Objectives:

- Acquaint the student with the history and evolution of crop plants, and their diversity.
- Familiarize the student with the available plant genetic wealth and the measures adopted for the conservation of these resources.
- Help the student to identify the crop plants and their wild relatives.
- Help the student to explore the potentialities of various underutilized plants to project as the future food prospects.
- Understand the significance of modern technology to locate the distribution of endangered species.

Module 1: Introduction (5 hrs)

Introduction - historical developments in crop botany, Centers of origin - Vavilovian concept - primary and secondary centers. Exploration and collection of genetic resources - importance of wild relatives of crop plants and their genetic diversity in crop improvement.

Module 2: Plant genetic resources (10 hrs)

Major threats to the genetic resources: human interference and deforestation, alien invasive plants, over exploitation of resources. Endemism and biodiversity hot spots. Conservation of genetic resources: in situ - biosphere reserves, national parks and wildlife sanctuaries; ex situ - in vivo - botanic gardens, field gene banks; in vitro - seed banks - short term, medium term and long term storage of seeds, tissue culture storage and cryopreservation.

Module 3: Study of biodiversity (5 hrs)

Remote sensing: principle, concept of remote sensing and components of remote sensing, application of remote sensing in conservation of endangered plants and habitat studies; IUCN - role and activities. Documentation of endangered and threatened plants - red data book.

Module 4: Ethnobotany and conservation (4 hrs)

Ethnobotany in relation to conservation of genetic resources: mythology and conservation of ecosystems, sacred groves and their role in the conservation of gene pool; taboos for conservation of selected plant species.

Module 5: Regulations and rules (4 hrs)

Role of Governmental and non-governmental organizations in plant genetic resource management; Governmental organizations - regional – TBGRI and KFRI; national - BSI and NBPGR; International – IPGRI (IBPGR) and ICRISAT; Non-Governmental Organizations - WWF and MNHS.

Module 6: Crop plants of Kerala (18 hrs)

Important Crop plants of Kerala - taxonomy and uses and cultivation of, food crops - Rice, Tapioca; Vegetables - Elephant foot yam, Cow pea, Bitter gourd; Spices. Ginger, Black pepper, Nutmeg, Cardamom; Medicinal plants - Vasaka, Aloe; Plantation crops – Rubber, Coffee; cashew, Coconut and Tea; Fruits - Banana, Pineapple and Mango.

Module 7: Unexploited and underutilized plants (9 hrs)

Underutilized plants and its importance for future food requirements. Botany and uses of the following under exploited edible plants - Vegetables - Averrhoa bilimbi (Bilimbi, Chemmeenpuli, Irumbampuli), Averrhoa carambola (Carambola apple, Chathurappuli), Dioscorea esculenta (Cherukizhangu, Nanakizhangu), Canavalia gladiate (Sword bean, Valpayar), Psophocarpus tetragonolobus (Winged bean, Chathurapayar), (Sessile joyweed), Sauropus androgynus (Velicheera, Chikurmanis, Sauropus), Ipomoea turbinate (Nithya Vazhuthana); Fruits; Artocarpus heterophyllus (Jack, Plavu, chakka), Artocarpus hirsutus (Anjili, Ayani, Wild jack), Aporosa cardiosperma (Vetti), Spondias pinnata (Ambazham, Hog plum), Syzygium cumini (Njara, Njaval, Black plum), Flacourtia montana (Kattuloovika). Millets - Echinochloa crus-galli (Barnyard grass, Indian Barnyard Millet)

REFERENCES

1. Arora R K, E R Nayar, 1984. Wild Relatives of Crop Plants in India. NBPGR, New Delhi.

2. Chang S T, Miles P G, 1979. Edible Mushrooms and their Cultivation. Boca Raton; CRC Press.

3. FAO (1989) Plant Genetic Resources: their Conservation for Human use, Rome Italy.

4. Frankel O H, E Bennet, 1970. Genetic Resources of Plants: their Exploration and Conservation, Oxford, Blackwell.

5. Harlan J R, 1975. Crops and Man. Wisconsin: American Society of Agronomy.

6. ICAR ,1969. Handbook of Agriculture, New Delhi.

7. Purseglove J W, 1974. Tropical Crops Dicotyledons, Longerman Group Ltd., London.

8. Purseglove J W, 1975. Tropical Crops Monocotyledons, Longerman Group Ltd., London.

9. Sambamurthy AV S S, N S Subramanyam, 1989. *A text book of Economic Botany*. Wiley Eastern Ltd. New Delhi.

10. Simmonds N W, 1976. Evolution of Crop Plants, Longman Group Ltd., London.

11. Zeven A C, P M Zhukovasky, 1975. *Dictionary of Cultivated Plants and their centers of Diversity*, Centre for Agricultural Publishing and Documentation Washington.

12. Nair M.C. (ed) 1990. Mushrooms Tech. Bulletin 17, Kerala Agri. Univ. Pub. Mannuthy. Thrissur.

13. Paroda R.S. and R.K. Arora 1991. *Plant Genetic Resources Conservation and Management*, NBPGR, New Delhi.

14. Kirtikar K R, B D Basu, 1991. Indian Medicinal Plants. Dehra Dun.

15. Rana R.S., R.K.Saxena, R.K Tyagi, S. Saxena and V. Mitter 1994 *ex-situ conservation of Plant Genetic Resources*, NBPGR. New Delhi.

16. Guarino, RamanathaRao& Reid (eds) 1995. *Collecting Plant Genetic Diversity*: Technical Guidelines; CAB International.

17. Singh B.B., Neeta Singh and KalyaniSrinivasan (eds) 1996. *Principles and Procedures* in Germplasm Conservation, NBPGR. New Delhi

18. Patel D.P. V.D. Verma, T.R. Loknathan, M.N. Koppar and K.P.S. Chandel (eds) 1997. *Crop Improvement through Plant Genetic Resources (Evaluation, maintenance and documentation,* NBPGR. New Delhi.

19. Erich Hoyt 1998. Conserving Wild Relatives of Crops, IPGRI, Rome.

20. Sivarajan V.V. and Indira Balachandran 1998. *Ayurvedic Drugs and their Plant Sources*, Oxford and IBH, New Delhi.

21. Singh B.P. &Umesh Srivastava 2004. Plant Genetic Resources in Indian Perspective- Theory and Practice, Directorate of Information and Publications of Agriculture, ICAR. New Delhi.

22. Amal Kumar Mondal 2005. Advanced Plant Taxonomy-chapter xi. Remote sensing Technology and Vegetation Classification pp.391-406, New Central Book Agency. Kolkata.

23. Varaprasad K.S., Z. Abraham, S.R. Pandravada et al 2006. *Medicinal Plants Germplasm of Peninsular India*, NBPGR New Delhi.

24. Peter K.V. & Z. Abraham 2007. *Biodiversity in Horticultural Crops* Vol.1, Daya Publishing House. New Delhi.

25. Panda B.C. 2008. Remote Sensing- Principles and Applications, Viva Books, New Delhi.

Programme elective course 3 Code: BO6PET03 PHYTOCHEMISTRY AND PHARMACOGNOSY (Theory: 54 hours; Credit 3)

Objectives:

- Understand the structure and function of basic secondary metabolites in medicinal and aromatic plants.
- Familiarize with the common separation and characterization techniques used in phytochemistry
- Understand the basic officinal part present in the common medical plants and their use in ayurvedic formulations

PHYTOCHEMISTRY

Module 1: Introduction (2 hrs)

Introduction to phytochemical approaches: morphological, organoleptic, microscopic - to study drug and aromatic plants.

Module 2: Extraction of phytochemicals (4 hrs)

Extraction and chacterisation techniques: cold extraction, hot extraction - soxhlet-clevenger apparatus; Solvents - petroleum ether, chloroform, ethanol, water. Separation techniques - TLC, Column, HPLC. Characterization techniques - GC/MS, HPTLC, UV Spectra, IR Spectra.

Module 3: Effect of phytochemicals (10 hrs)

Study of the drug plants and their active principles. Alkaloids - introduction, properties, occurrence, structure, classification, functions, and pharmacological uses.

Triterpenoids. Introduction, properties, occurrence, classification, functions and pharmacological uses. Phenolics. Quinines - benzoquinones, napthoquinones, anthraquinone, and coumarins.

Module 4: Plants of importance (20 hrs)

Study of the following plants with special reference to habit, habitat and systematic position and morphology of the useful part; organoleptic, anatomical and chemical evaluation of the officinal part; phytochemistry and major pharmacological action of plant drugs and ayurvedic formulations made using the plant: *Tinospora cordifolia, Papaver somniferum, Aegle marmelos, Punica granatum, Adhatoda vasica, Withania somnifera, Achyranthes aspera, Asparagus racemosus, Sida acuta, Carica papaya, Azadirachta indica, Phyllanthus neruri, Datura stramonium, Aloe veera, Tylophora indica, Acorus calamus.*

Module 5: Aromatic plants and their uses (10 hrs)

Study of the following aromatic plants - volatile oils and methods of extraction Vetiveria zizanoides, Cinnamomum zeylanica, Sysygium aromaticum, Santalum album, Eucalyptus, Ocimum bacilicum, Rosa, Mentha piperita, Cympopogon, Cananga, Pelargonium.

PHARMACOGNOSY

Module 6: Pharmocognosy (4 hrs)

Introduction, tools for identifying adulteration; methods in pharmocognosy - microscopy, phytochemical methods - study of starch grains of maize, wheat, rice, potato, curcuma.

Module 7: Ethnomedicine (4 hrs)

Traditonal plant medicines as a source of new drugs – The process of modern drug discovery using ethnopharmacology – Taxol, Artemisinin, Galathamine and Flavopyridole as examples of drug discovery based on ethanopharmacological approach. Jeevani-Pushpangadan model of benefit sharing.

Suggested additional topics:

- 1. Basic principles in spectroscopy UV, NMR, IR etc.
- 2. Use of secondary metabolites for protection against pathogens, herbivores.

REFERENCES

1. Ashutosh Kar, 2006, *Pharmacognosy and Pharmacobiotechnology*, New Age International, New Delhi

2. Atal.C K, Kapur B M, 1982. Cultivation and Utilization of Medicinal Plants.

- 3. Bhattacharjee S K, 2003, Hand Book of Medicinal Plants, Pointer Publishers, Jaipur
- 4. Daniel M, 1991. Methods in plant chemistry and Economic Botany. Kalyani publishers, New Delhi.
- 5. Glossary of Indian Medicinal Plants with Active Principles Part I & II, 1980. CSIR, New Delhi.
- 6. Indian Medicinal Plants (5Vols) 1994. Arya Vaidya Sala Kottackal, Orient longoman New Delhi.
- 7. Irfan Ali Khan, 2008. Medicinal and Aromatic plants of India, Ukaaz Publishers, Hyderabad
- 8. Jain S K 2004. A Manual of Ethnobotany, Scientific Publishers, India
- 9. Khory R N 1999. Materia Medica of India and their Therapeutics, Komal Prakashan, Delhi
- 10. Krishnaswamy N R 2003. Chemistry of Natural Products, Universities press, Hyderabad

11. Pushpangaden P Nyman ULF George V. *Glimpses of of Indian Ethno Pharmacology*. The Royal Danish School of Pharmacy Copenhagen, Denmark.

- 12. Trease, Evans, 2002. Pharmacognosy, W.B. Saunder,,s Co., Ltd.
- 13. Trivedi P C, 2007. Medicinal Plants Utilisation and Conservation, Avishkar Publishers, Jaipur
- 14. Upadhyaya R C, 2008. The treatise on Aromatic plants, Anmol Publications, New Delhi
- 15. Wallis T E, 1997. Text Book of Pharmacognosy. CBS Publication & Distribution.
- 16. Wealth of India, (XI Vols) 1985. CSIR.

```
*****
```

COMPLEMENTARY COURSES FOR MODEL I B Sc ZOOLOGY

SEMESTER I

Complementary course 1 Code: BO1CMT01 CRYPTOGAMS, GYMNOSPERMS AND PLANT PATHOLOGY (Theory 36 hrs; Practical 36 hrs; Credits 2 + 1)

Objectives:

- Acquire fundamental knowledge in plant science and to make the student to understand that Botany is an integral part of the human life and developments.
- Foster and encourage an attitude of curiosity, appreciation and enquiry of various life forms of plants.
- Understand the identifying characters of the different types included in the syllabus.
- Understand the diversity of plants with respect to Algae, Fungi, Lichens, Bryophytes, Pteridophytes and Gymnosperms.

CRYPTOGAMS (27 hrs)

Module 1: Algae (13 hrs)

General characters of algae and their classification up to classes (F E Fritsch); range of thallus variation in Algae. Reproduction and life history of the following groups with reference to the types mentioned: Cyanophyceae - *Nostoc*; Chlorophyceae - *Oedogonium* (*Volvox, Spirogyra, Cladophora* - vegetative features only); Phaeophyceae - *Sargassum;* Rhodophyceae - *Polysiphonia*.

Economic importance of Algae: food, industry, medicine, biofertilizers; algal bloom.

Module 2: Fungi and lichens (9 hrs)

General characters and outline on the classification of fungi by Ainsworth. General characters, thallus structure, reproduction and life history of the following groups with reference to the types mentioned: Zygomycotina – Rhizopus; Ascomycetes – *Xylaria;* Basidiomycetes – *Puccinia.*

Economic importance of Fungi: as food, industry, decomposition of organic matter. Fungal toxins and human health.

Lichens: Classification based on thallus morphology. Usnea - morphology and anatomy of vegetative and reproductive structure. Economic importance of lichen: food, industry, medicine.

Module 3: Bryophytes (2 hrs)

General characters of Bryophytes. Morphology, anatomy, reproduction and life cycle of Riccia.

Module 4: Pteridophytes (3 hrs)

General characters of Pteridophytes. Morphology, anatomy (stem), reproduction and life cycle of *Selaginella*.

Module 5: GYMNOSPERMS (4 hrs)

General characters of Gymnosperms. Morphology, anatomy (leaf let), reproduction and life cycle of *Cycas*.

PLANT PATHOLOGY (5 hrs)

Module 6: Plant diseases (5 hrs)

Classification of plant diseases on the basis causative organism and symptoms. Study the following diseases with special emphasis on causative organism, symptoms and control measures:

(i) Nut fall of Arecanut (ii) Bacterial blight of Paddy (iii) Leaf mosaic of Tapioca.

PRACTICAL (36 hrs)

1. Micropreparation and identification preparation of the following:

(i) Algae: vegetative structure of *Nostoc*, *Volvox*, *Spirogyra*, *Oedogonium*, *Cladophora*, *Polysiphonia*. Vegetative and reproductive structure of *Sargassum*.

- (ii) Fungi: vegetative and reproductive structure of *Rhizopus*, *Xylaria*, *Puccinia*.
- (iii) Lichen: morphology of Usnea thallus and Apothecium.
- (iv) Bryophytes: Riccia thallus anatomy.
- (v) Pteridophytes: Selaginella anatomy of stem and morphology of strobilus.
- (vi) Gymnosperms: Cycas Anatomy of leaflet, morphological features of megasporophyll,
- microsporophyll and ovule.
- 2. Identify plant diseases mentioned in the syllabus.

REFERENCES

- 1. Ahamdijan, Vernon, Mason H E, 1973. The Lichens. Academic press, New York.
- 2. Alexopoulose C J, Mims C W, 1983. Introductory Mycology. Wiley Eastern, New York.
- 3. Bhatia K N, 1975. A treatise on Algae. S Chand and Co.

4. Bilgrami K S, Dube H C, 1976. Text Book of Modern Plant pathology. Vikas Publishing House Pvt. Ltd. New Delhi.

- 5. Chaube H S, Ramji S, 2001. Introductory Plant Pathology. International Book Distributing Co. Lucknow.
- 6. Chopra R N, Kumra P K, 1988. Biology of Bryophytes. Wiley Eastern Ltd. New Delhi.
- 7. Fritsch F E, 1945. Structure and Reproduction of Algae Vol. I & II. Cambridge University Press.
- 8. Gangulee H C, Kar A K, 1993. College Botany Vol. II. New Central Book Agency, Calcutta.
- 9. Kanika Sharma, 2009. Manual of Microbiology. Ane Books Pvt. Ltd.
- 10.Mamatha Rao, 2009. Microbes and Non-flowering plants: Impact and applications. Ane Books Pvt. Ltd.
- 11. Pandey S N, Trivedi P S, 1994. A Text book of College Botany Vol. I.
- 12. Pandey S N, Trivedi P S, 1998. A Text book of College Botany Vol. II.
- 13. Pandey B P, 2007. College Botany Vol. I. S.Chand and Company.
- 14. Pandey B P, 2007. College Botany Vol. II. S Chand and Company.
- 15. Sharma P D, 2003. Microbiology, Plant Pathology and Biotechnology. Rasthogy Publications.
- 16. Vasishta B R. Bryophyta. S Chand and Co. New Delhi.

SEMESTER II

Complementary course 2 Code: BO2CMT02

PLANT PHYSIOLOGY

Objectives:

(Theory 36 hrs; Practical 36 hrs; Credits 2 + 1)

- Make the students realize the importance of all physiological processes which take place in plants.
- Understand the mechanism of various physiological processes related to plant life.

Module 1: Water relations (11 hrs)

Plant water relations: Physical aspects of water absorption - Diffusion, DP, DPD. Imbibition. Osmosis - OP, Exosmosis, Endosmosis, Plasmolysis. Water potential and its components. Mechanism of water

absorption by root - active and passive absorption. Movement of water towards xylem by apoplast and symplast pathway. Ascent of sap – theories - transpiration pull theory, root pressure theory; guttation.

Transpiration: types, mechanism of transpiration and stomatal movement (K^+ - ABA theory), significance and factors affecting transpiration, antitranspirants.

Module 2: Mineral nutrition (4 hrs)

General account on Micro and macro nutrients. Absorbable form, function and deficiency symptoms of the following mineral nutrients: N, P, K, Mg, B, Fe, Zn.

Module 3: Photosynthesis and translocation of photosynthate (15 hrs)

Basic requirements of Photosynthesis: Light - PAR; organs and site of photosynthesis; chloroplast. Photosynthetic pigments, photosynthetic unit; red drop and Emerson,,s enhancement effect; two pigment systems.

Mechanism of photosynthesis: light dependent reaction - cyclic and non cyclic photo phosphorylation. Light independent reaction (dark reactions) C3 cycle, brief account on C4 and CAM Cycles. Factors affecting photosynthesis. Photorespiration (brief study only).

Translocation of photosynthate and organic solutes: path of translocation, mechanism of translocation (Pressure Flow Hypothesis).

Module 4: Growth and Development (6 hrs)

Seed dormancy - causes of seed dormancy - methods of breaking dormancy. Germination of seeds - physiological changes. Growth: Phases of growth, plant growth regulators - auxins, gibberellins, cytokinins, abscissic acid and ethylene and their physiological role (brief study only). Photoperiodism - definition, short day plants, long day plants, day neutral plants. Vernalization.

PRACTICAL (36 hrs)

Core Experiments:

- 1. Demeonstration of osmosis using potato tuber osmoscope/Papaya petiole osmoscope.
- 2. Separation of leaf pigments by paper chromatography.
- 3. Compare the stomatal indices of hydrophytes and xerophytes.

Demonstration experiments:

- 1. Measure the rate of transpiration by Ganong's potometer.
- 2. Relationship between transpiration and absorption.
- 3. Measurement of growth using Arc Auxanometer.
- 4. Demonstration of geographic curvature using Clinostat.
- 5. Evolution of oxygen during photosynthesis.
- 6. Mohl"s half leaf experiment.
- 7. Light screen experiment.

REFERENCES

1. Hopkins W G, Norman P A, Huner, 2008. Introduction to Plant Physiology. John Wiley & Sons, New York.

- 2. Jain V K, 2008. Fundamentals of Plant Physiology. S Chand and Co.
- 3. Kochhar P L, Krishnamoorthy H N. Plant Physiology. Atmaram and sons, Delhi.
- 4. Kumar and Purohit. Plant Physiology: Fundementals and Applications. Agrobotanical Publishers.
- 5. Malik C P, 2002. Plant Physiology. Kalyani publishers.
- 6. Mukherjii S, Ghosh AK, 2005. Plant Physiology. New Central Book Agency, Culcutta.
- 7. Noggle G R, Fritz G J. Introductory Plant Physiology. Prentice Hall of india.
- 8. Pandey S N, Sinha B K, 2006. Plant physiology. Vikas Publishing House, New Delhi.
- 9. Salisbury F B, Ross C W, 1992. Plant Physiology. CBS publishers and Distributers, New Delhi.

10. Sinha A K, 2004. Modern Plant Physiology. Narosa publishing House, New Delhi.

11. Srivastava H S, 2004. Plant physiology and Biochemistry. Rasthogi publications.

12. Verma V, 2007. Text Book of Plant Physiology. Ane Books Pvt. Ltd.

13. Verma S K, Mohit Verma, 2006. A Text book of Plant physiology, Biochemistry and Biotechnology. S Chand and Co.

SEMESTER III

Complementary course 3 Code: BO3CMT03 ANGIOSPERM TAXONOMY AND ECONOMIC BOTANY (Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- Acquaint the student with the objectives and components of Taxonomy.
- Help the student to understand the systems of classification of angiosperms.
- Help the student to identify the common angiosperm species of Kerala.
- Familiarize the student with plants of immense economic importance.

ANGIOSPERM TAXONOMY (36 hrs)

Module 1: Morphology (10 hrs)

Leaf - simple, compound; venation and phyllotaxy. Flower as a modified shoot, structure of flower - floral parts, their arrangement, relative position; cohesion and adhesion of floral parts, symmetry of flowers; types of aestivation and placentation; floral diagram and floral formula. Inflorescence: racemose - simple, spike, spadix, catkin, corymb, umbel and head; cymose - simple, monochasial-helicoid and scorpoid; special types – cyathium, verticillaster. Fruits: outline on the classification; Simple: Fleshy - drupe, berry, hesperidium; Dry - Dehiscent - legume, capsule; Indehiscent - Caryopsis, Cypsella, Schizocarpic - lomentum, carcerulus, regma, cremocarp with examples.

Aggregte. Multiple: sorosis, syconus. (Examples should be from families prescribed in the syllabus).

Module 2: Plant classification and Herbarium techniques (8 hrs)

Importance of plant classification, types of classification - artificial, natural and phylogenetic (brief account only); binomial nomenclature; ICBN (Brief account only). Bentham and Hooker, system of classification (up to series) and its merits and demerits. Cytotaxonomy and chemotaxonomy (brief account only). Herbarium techniques; importance of herbarium.

Module 3: Angiosperm families (18 hrs)

Study of the following families of Bentham and Hookers system of classification with special reference to major identifying characters and economic importance: Annonaceae, Malvaceae, Rutaceae, Leguminosae (Mimosaceae, Caesalpiniaceae and Fabaceae), Apiaceae (Umbelliferae), Rubiaceae, Asteraceae (Compositae), Apocynaceae, Lamiaceae (Labiatae), Euphorbiaceae, Arecaceae (Palmae), Poaceae (Gramineae).

ECONOMIC BOTANY (18 hrs)

Module 4: Classes of economically important plants (10 hrs)

Classification of economically important plants based on their uses. Study of the following groups of plants with special reference to their botanical name, family, morphology of useful part, economic products and uses: Cereals - Paddy, Wheat; Pulses - Green gram, Bengal gram; Tuber crops -

Tapioca; Spices - Pepper, Cardamom; Beverages - Tea, Coffee; Oil yielding plants - Coconut, Groundnut; Fibre yielding plants - Cotton, Coir; Timber yielding plants - Teak, Rose wood; Latex yielding plants - Para rubber; Bio pesticides - Neem, Tobacco; Ornamental plants - Rose, Orchids, Anthurium.

Module 5: Medicinal plants (8 hrs)

Study of the following medicinal plants with special reference to their binomial, family, morphology of useful parts and uses: *Adhatoda, Aloe, Bacopa, Catharanthus, Eclipta, Neem, Ocimum, Phyllanthus amarus, Rauvolfia, Sida.*

PRACTICAL (36 hrs)

1. Students should be trained to identify the different types of inflorescence and fruits of typical plants belonging to the families prescribed in the syllabus.

2. Students should be trained to identify typical local plants belonging to the families prescribed in the syllabus.

3. Students should be trained to describe the floral parts in technical terms and draw the L.S. of flower, construct the floral diagrams and write the floral formula of at least one flower from each family.

4. Study of the groups of plants mentioned in the economic botany syllabus with special reference to their botanical name, family, morphology of useful part, economic products and uses.

5. Students should study the botanical name, family, morphology of the useful part and the uses of the medicinal plants listed in the syllabus.

REFERENCES

1. Eames A J, 1969. *Morphology of Angiosperms*. McGraw Hill, New York.

2. Hill A F, 1952. *Economic Botany: A Text book of Useful Plants and Plant Products*. Tata McGraw-Hill Publishing Company Limited, New Delhi.

3. Jain S K, 1987. A Manual of Ethnobotany. Scientific Publishers, Jodhpur.

4. Kochhar S L, 1981. Economic Botany in the Tropics. Macmillion India Limited, Delhi.

5. Lawrence G H M, 1951. Taxonomy of Vascular Plants. Oxford & IBH, New Delhi.

6. Naik V N, 1984. Taxonomy of Angiosperms. Tata McGraw Hill Publishing Co, New Delhi.

7. Pandey S N, S P Misra, 2008. Taxonomy of Angiosperms. Ane Books India, New Delhi.

8. Sharma O P, 1993. Plant Taxonomy. Tata McGraw Hill Publishing Co Ltd., New Delhi.

9. Simpson B S, M Conner – Ogorzaly, 1986. *Economic Botany: Plants in Our World*. McGraw Hill Book Company, New York.

10. Singh G, 1999. Plant Systematics – Theory and Practice. Oxford & IBH, New Delhi.

SEMESTER IV

Complementary course 4 Code: BO4CMT04 ANATOMY AND APPLIED BOTANY (Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- Understand different types of plant tissues.
- Understand the internal structure of different plant organs with reference to their functions.
- Understand the process of normal and anomalous secondary thickening in plants.
- Know the morphological and anatomical adaptations of plants growing in different habitats.
- Understand how botanical knowledge could be applied for crop improvement.

PLANT ANATOMY (27 hrs)

Module 1: Cells and tissues (9 hrs)

Gross structure of primary and secondary cell walls; structure and function of plasmodesmata; nonliving inclusions - cystolith, raphides; Tissues – meristematic and permanent, types of meristems; simple and complex tissues, secretory tissues (nectaries, hydathodes, mucilage ducts and lactiferous tissue).

Module 2: Anatomy of plant organs (12 hrs)

Primary structure of stem and root in dicots and monocots; anatomy of monocot and dicot leaf. Secondary thickening in dicot stem and dicot root, heart wood and sap wood; tyloses; hard wood and soft wood; growth rings, dendrochronology. Anomalous secondary thickening in *Bignonia*.

Module 3: Ecological anatomy (6 hrs)

Study of the morphological and anatomical adaptations of the following groups: Hydrophytes – *Nymphaea*, Hydrilla; Xerophytes – *Nerium;* Epiphytes - *Vanda*.

APPLIED BOTANY: Plant breeding, Horticulture and Micropropagation (27 hrs) Module 4: Plant breeding (12 hrs)

Objectives of plant breeding, methods of plant improvement - plant introduction, acclimatization, plant quarantine; selection - mass selection, pureline selection and clonal selection; hybridization - intervarietal, interspecific and intergeneric; procedure of hybridization.

Module 5: Artificial vegetative propagation methods (5 hrs)

Propagation of plants through cutting, layering - air layering; budding T and patch budding; grafting - tongue and splice grafting. Role of cambium in budding and grafting.

Module 6: Plant tissue culture (10 hrs)

Principles of tissue culture, micropropagation - different steps - selection of explants, culture media – general composition and preparation; sterilization of media and explants; callus. Regeneration of plants: organogenesis, somatic embryogenesis; artificial seeds. Applications of plant tissue culture.

PRACTICAL (36 hrs)

1. Primary structure of stem and root of dicots and monocots; Dicot stem - Centella; Monocot stem - Bamboo, grass, asparagus; Dicot root - Tinospora; Monocot root - Colocasia, Musa.

2. Structure of dicot stem and dicot root after secondary thickening; Stem - Vernonia, Eupatorium; Root - Tinospora, Papaya.

3. Anomalous secondary thickening in Bignonia.

4. Anatomical adaptations of Hydrophytes - *Nymphaea* petiole, *Hydrilla* stem; Xerophytes - *Nerium* Leaf; Epiphytes - Velamen root of *Vanda*.

- 5. Emasculation of pea or *Caesalpinia* flower.
- 6. Demonstrate T and patch budding.

7. Demonstration of tissue culture techniques: culture media, surface sterilization and inoculation of explants.

8. Identification of non living inclusions - cystolith, raphides.

REFERENCES

- 1. Christopher E P, 1958. Introductory Horticulture. McGraw Hill, New York.
- 2. Esau K, 1965. Plant Anatomy. Wiley, New York.
- 3. Fahn A, 1985. Plant Anatomy. Pergamon Press, Oxford.
- 4. Hartman H T, D E Kester, 1991. *Plant Propagation: Principles and Practices*. Prentice Hall of India, New Delhi.
- 5. Kumar N, 1994. Introduction to Horticulture. Rajalakshmi Publications, Nagercoil.
- 6. Pandey B P, 1984. *Plant Anatomy*. S Chand and Company, New Delhi.
- 7. Vasishta V C, 1978. Plant Anatomy. S Nagin and Company, Jalandhar.
